0 卖盘信息
BOM询价
您现在的位置: 首页 > 技术方案 >工业控制 > 基于ML2035低频正弦信号发生器的设计方案

基于ML2035低频正弦信号发生器的设计方案

来源:
2023-12-29
类别:工业控制
eye 319
文章创建人 拍明芯城

  基于ML2035低频正弦信号发生器的设计

  1 引 言

  正弦信号发生器是一种广泛应用的信号源,对它的要求也随着技术的发展越来越高。传统的正弦信号发生器产生电路一般采用模拟电路来实现,低频输出的频率的稳定度和精度等指标都不高。为了要获得高稳定度的信号源,往往要采用锁相环来实现,但电路复杂且体积庞大。

  随着电路系统的数字化发展,直接数字频率合成( Direct Digital Synthesizer, DDS) 作为一种波形产生方法,得到了广泛的应用。DDS 技术具有产生频率快速转换、分辨率高、相位可控的信号。这在电子测量、雷达系统、调频通信等领域具有十分重要的作用。若选用通常的DDS 芯片来实现低频正弦信号发生器,往往需要外部微处理器,电路较为复杂。而ML2035可以不需要其他的外围器件。

  2 ML2035 的工作原理

  ML2035 原理框图如图1 所示。其内部主要由串行输入接口、相位累加器、正弦波发生器和晶体振荡器4 大部分组成。串行输入接口电路负责将用户输入的16 位串行频率控制字转化为并行数据, 并传送给相位累加器,控制相位生成的速度;然后,相位累加器把21 位累加和的高9 位作为有效数据传送给正弦波发生器;正弦波发生器把这9 位数据的最高位作为符号位,次最高位作为象限位,低7 位作为正弦搜索表的查表地址,以生成4 象限的波形样值数据;最后,波形数据传送到一个8 位的数模转换器, 形成正弦脉冲波,经过一个低通滤波器平滑波形后输出。下面分别介绍这4 部分的组成和原理。

  

image.png


  图1 M L2035 的原理框图

  2. 1 相位累加器

  相位累加器如图2 所示,它是DDS 的核心部件,由加法器和相位锁存器构成。每来一个时钟脉冲, 相位寄存器的输出就增加一个步长的相位增量值,加法器将频率控制数据与累加寄存器输出的累加相位数据相加,把相加结果送至累加寄存器的数据输入端。相位累加器进入线性相位累加, 至满量程时产生一次计数溢出,这个溢出频率即为DDS 的输出频率。加法器A 组的低16 位( A15 ~ A0 ) 接串行输入接口电路的16 位锁存器输出,高5 位( A20 ~ A16 ) 全部接地。B 组( B20 ~ B0 ) 作为后端锁存器的反馈输入。

  

image.png


  图2 相位累加器

  2. 2 正弦波发生器

  正弦波发生器如图3 所示。由相位累加器送来的低7 位地址码和第8 位( 象限位) 先送到象限求补器。

  象限位为0 时,象限求补器保持地址码不变;象限位为1 时,它对地址码进行模128 求补。在1 个T OUT 内,生成4 个的TO UT / 4 位地址码。这些地址码被送到ROM用于搜索对应相位点的正弦波样值, 以获得2 个半波的正弦波样值数据,连同相位累加器的最高位一起送到符号求反器。这样使得第一个半波不变,第二个半波被倒相,从而生成一个周期的完整正弦波样值数据。将相位寄存器的输出与相位控制字相加得到的数据作为一个地址对正弦查询表进行寻址,查询表把输入的地址相位信息映射成正弦波幅度信号驱动DAC 做D/ A 转换,输出模拟信号;低通滤波器平滑,输出频谱纯净的正弦波信号。

  由DDS 的基本原理可以知道,输出的正弦信号将有可能出现误差。对于不同的参考时钟,将产生不同程度的频率误差,表1 例举了ML2035 在常见的晶振下的频率控制字和频率误差情况。

  

image.png


  图3 正弦信号发生器

  表1 ML2035 在常见的晶振下的频率控制字和误差

  

image.png


  3 基于ML2035 的低频信号发生器的设计

  输出的正弦信号的频率可以由16 b 的串行比特字控制,广泛地应用在输出正弦波要求高的领域。

  ML2035 的频率设置值是通过SID 脚串行输入的。数据在SCK 的上升沿移入。当16 b 数据都进入移位寄存器后,在LAT 1 的下降沿锁存。由于ML2035 的控制字是16 b,因此据DDS 的原理可以得出ML2035 的输出频率关系式为:

  

image.png


  相应地,ML2035 的频率分辨率为:

  


  用ML2035 产生100 Hz 的正弦信号,系统所用晶振选取6. 553 6 MHz,通过输出的频率关系式( 1) 可以计算出16 b 的控制字为0000000010000000,则由74LS20 产生16 b 的控制字输入到ML2035 的SID 端,控制ML2035 的输出频率为100 Hz 的正弦信号。通过ML2035 的LAT 1 端在时钟的下降沿将频率控制字锁入16 b 数据锁存器中。正弦信号发生器如图4 所示。

  

image.png


  图4 100 H z 正弦信号发生器

  输出的脉冲时序图如图5 所示。

  

image.png


  图5 脉冲时序图

  则产生100 Hz 正弦波信号的控制字应由f out = Q5.Q6.Q7.Q8 得出。

  4 结语

  由于ML2035 可以不需要外部处理器,能够在外围器件较少的情况下,产生精度和稳定度较高的正弦信号。因此可以应用ML2035 设计出频率在0~ 25 kHz 的高稳定的、高精度的正弦波形。由ML2035 的工作原理,设计了100 Hz 的正弦信号发生器,实验证明该信号发生器具有较高的稳定度和精度。

  正弦波信号发生器基本原理与设计

  正弦信号发生器主要由两部分组成:正弦波信号发生器和产生调幅、调频、键控信号。正弦波信号发生器采用直接数字频率合成DDS技术,在CPLD上实现正弦信号查找表和地址扫描,经D/A输出可得到正弦信号。具有频率稳定度高,频率范围宽,容易实现频率步进100Hz。

  1、正弦波形的产生

  单向DDS由Nbit相位累加器和ROM只读存储器(正弦查找表)构成的数控振荡源(NCO),数模转换器(DAC)、低通平滑滤波器(LPF)构成,图1所示为DDS的基本结构。

  图1中fc为时钟频率,K为频率控制字,N为相位累加器的字长,M为ROM地址线位数,L为ROM数据线宽度,f0为输出频率。相位累加器由全加器和累加寄存器级联组成。在时钟频率fc的控制下,对输入频率控制字K进行累加,累加满量时就产生溢出。相位累加器的输出对应于该时刻合成周期信号的相位,并且这个相位是周期性的,在0~2π范围内变化。相位累加器位数为N,最大输出为2N-1,对应于2π的相位,累加1次就输出1个相应的相位码,地址以查表方式,得到对应相位的信号幅度值,经过数模转换,就可以得到一定频率的信号输出波形,低通滤波器对输出的信号波形进行平滑处理,滤除杂波和谐波。

  由于控制字K经过2N/K次累加,相位累加器满量溢出,完成1个周期运算,所以输出频率f0由fc和K共同决定,即f0=fcK/2N且K《2N-1,得到DDS的最小分辨率可达fc/2N。理论上通过设定DDS相位累加器的位数N、频率控制字K和时钟频率fc的值,就可以产生任一频率的输出。根据频率步进100Hz的要求,选取累加器的位数为19位,计算出时钟频率fc应为52.4288MHz。步进的累计误差通过软件补偿的方法进行修正,利用现有的52.4160MHz晶振完全精确地实现步进100Hz的要求。

  2、产生模拟幅度调制信号

  用调制信号去控制高频振荡的幅度,使其幅度的变化量随调制信号成正比地变化,这一过程称为幅度调制。若载波为uc=Uccosωct,调制信号为f(t)=cosΩt,则调幅波为

  uAM(t)=Uc[1+macosΩt]cosωct(1)

  普通调幅波利用模拟相乘器实现,但是外围电路复杂,改变调制度需改变电路元件的参数,实现起来繁琐。可以采用CPLD芯片结合DDS技术灵活的实现数字调幅,原理如图2所示。

  由DDS产生的波形信号作为载波,在单片机内部作调制信号为1kHz的正弦波形存储表,根据键盘所设定的调制度ma(10%~100%)与存储表中的数据相乘的结果送CPLD与DDS得到的波形相乘,再与DDS信号相加就产生相应的数字调幅波编码,经D/A转换得到模拟调幅信号。

  3、产生模拟频率调制信号

  在连续波调制中,载波可表示为uc=Uccosωct,调制信号为UΩ(t),调频波是瞬时频率的变化量与调制信号成正比,因此调频波的瞬时角频率除了载波角频率ωc外,还附加一项和调制信号成正比的部分ω(t)=ωc+Δωf(t),Δωp(t)=kfuΩ(t),式中kf为比例系数,是单位调制信号强度引起的频率变化。Δωf(t)的最大值Δωf称为最大频偏,反映在频率上为f(t)=fc+Δfcos(2πft),调频波的表达式:

  UFM(t)=Uccos[(fc+Δfcos(2πft)t](2)

  图3为CPLD数字调频电路,频偏为5K时的控制字是50,将余弦波形与50相乘,并与单片机传递的频率控制字相加,送入DDS模块经D/A转换就可以输出调频波,其设计原理图如图4所示。

  4、产生二进制PSK、ASK信号

  用数字基带信号去控制高频正弦波的幅度就是振幅键控调制ASK。在CPLD内部只需要根据所设定的二进制基带序列码对产生的DDS波形进行处理,二进制基带序列为1时波形通过,序列为0时输出0,仿真波形如图5所示。移相键控PSK是数字基带信号去控制载波的相位。

  它是利用载波不同相位或相位变化来传递信息的。PSK的实现方法是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换,两个载波相位通常相差180°,波形如图6所示。

  5、输出信号调理部分

  D/A转换电路如图7所示,选用的是12位高速D/A器件AD9713,该器件具有更好的静态性能和动态特性。AD9713B更新速率可达100MS/s。由于该D/A转换器是针对DDS、波形重构和高质量图像信号处理等应用而设计的,这款芯片在动态特性方面表现特别突出,并且具有优良的谐波抑制能力。AD9713输出满量程电流输出是由VCONTROLAMPIN和RSET决定的,图7中AD9713采用内部参考电压,输出满量程电流为-20mA。

  幅度调节电路是由放大器组成。高频信号放大要求放大器有足够的输出电压转换速率,在正弦波的情况下,放大器所需要的最大摆率SR=2πω=2πAf,其中ω为信号的角频率,A为信号幅度,f为频率。此外,幅度调节电路要求带低阻负载,放大器的电流输出能力也是个重要参数,要在50Ω负载上输出6V信号,则放大器至少要有120mA的连续电流输出能力。考虑以上原因,本文选择AD公司的高速运放AD811作为输出放大器,它是一个宽带高速电流反馈型运算放大器,其各项参数非常适合上述指标:小信号带宽(G=+2时)达120MHz,电压摆率SR为2500V/μs,全谐波失真THD为-74dB(10MHz),输出电流达100mA,其短路输出电流可达150mA。

  幅度调节电路如图8所示,图中R3和R4起分流作用,限制用于I/V转换的电流,1个电流反馈的高速放大电路。它把AD9713输出的电流转换成电压,通过反馈电阻Rf的电流决定AD811输出的幅度为6V。为了增大后级的带负载能力设计了后级电压跟随,模拟输出的最后部分是滤波电路,滤波器的选择主要取决于系统所要输出的波形,在50Ω的负载电阻上的电压峰峰值为6±1V。

  6、频率值的接收与显示

  键盘、显示部分用来实现用户与单片机的交互。系统采用中断查询的方式接收通过键盘输入的频率值。该频率值一方面送到数码显示接口进行显示,另一方面转化成频率控制字送往相位累加模块。

  7、系统软件设计

  8、功能及指标测试

  利用测试仪器:EE1641B1型函数信号发生器/计数器,直流稳压电源GPS-3303C、60MHz示波器TDS1002,高频测试仪等对设计的信号发生器进行性能测试。正弦波的频率范围、步进、在50Ω负载上的输出电压幅度,失真度测量如表1所示,频率稳定度测量如表2所示,步进为10%的幅度调制测试如表3所示,调制信号为1kHz的频率调制测试如图10所示,二进制PSK、ASK如图11和图12所示。

  经过测试可以得到,本文设计的系统可达以下性能指标:

  1)正弦波输出频率范围1kHz~10MHz。

  2)具有频率设置功能,频率步进100Hz。

  3)输出信号频率稳定度优于10-4。

  4)输出电压幅度在50Ω负载电阻上的电压峰-峰值Vopp≥1V。

  5)失真度用示波器观察时无明显失真。

  综合分析各项指标的测试结果发现,该设计频率变化范围大,信号稳定度高,失真度好,达到了性能良好的设计要求。

  信号发生器如何发出双脉冲?

  信号发生器是一种用于产生各种信号波形的仪器。双脉冲信号是一种特殊的信号波形,由两个脉冲组成,通常用于测试和测量系统的响应和性能。在本文中,将详细介绍信号发生器如何发出双脉冲信号,并提供相应的步骤和示例。

  1. 确定信号发生器的特性和功能

  在使用信号发生器之前,需要先了解信号发生器的特性和功能。常见的信号发生器可以产生多种波形,例如正弦波、方波、三角波等,并具有调节频率、幅度、相位等参数的能力。了解信号发生器的特性和功能,将有助于我们更好地理解如何产生双脉冲信号。

  2. 确定双脉冲信号的参数

  在开始生成双脉冲信号之前,需要确定信号的关键参数。这些参数通常包括脉冲的宽度、脉冲的周期、脉冲的相对位置等。确定这些参数将对信号发生器的设置产生重要影响,因此请确保对这些参数有清晰的理解。

  3. 设置信号发生器

  根据双脉冲信号的参数设置信号发生器。首先,选择一个适当的波形,例如方波。然后,设置波形的频率、幅度和相位。根据双脉冲信号的要求,设置脉冲的宽度和周期。最后,调整脉冲的相对位置,确保两个脉冲之间有所间隔。

  4. 确定触发方式

  在生成双脉冲信号时,触发方式也是一个重要的因素。触发方式决定了信号发生器何时开始发出信号。信号发生器通常提供内部触发和外部触发两种方式。在创建双脉冲信号时,可以根据需要选择适当的触发方式。

  5. 生成双脉冲信号

  完成信号发生器的设置后,可以开始生成双脉冲信号。根据所选择的触发方式,触发信号发生器,使其开始产生信号。通过示波器或其他测量设备,可以检测到信号发生器发出的双脉冲信号。

  示例:

  为了更好地理解如何生成双脉冲信号,以下是一个简单的示例。

  1. 假设我们要生成一个周期为1秒的双脉冲信号,其中每个脉冲的宽度为0.1秒。我们将使用方波作为我们的信号波形。

  2. 首先,我们选择方波作为波形。然后,设置波形的频率为1Hz,幅度为5V,并将相位设置为0。

  3. 接下来,根据双脉冲信号的要求,设置脉冲的宽度和周期。在这个示例中,将脉冲的宽度设置为0.1秒,周期设置为1秒。

  4. 最后,调整脉冲的相对位置,使得两个脉冲之间有0.8秒的间隔。这可以通过调整相位来实现。

  5. 设置完毕后,触发信号发生器,使其开始发出信号。使用示波器测量信号,可以看到双脉冲信号的波形。

  总结:

  在本文中,我们详细介绍了信号发生器如何发出双脉冲信号。通过了解信号发生器的特性和功能,确定双脉冲信号的参数,设置信号发生器,选择合适的触发方式,并生成双脉冲信号。给出了一个示例,进一步说明了如何生成双脉冲信号。


责任编辑:David

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯