0 卖盘信息
BOM询价
您现在的位置: 首页 > 技术方案 >电源管理 > 基于SPCE061的MPPT太阳能锂电池充电器设计

基于SPCE061的MPPT太阳能锂电池充电器设计

来源: 维库电子网
2021-11-18
类别:电源管理
eye 6
文章创建人 拍明

原标题:基于SPCE061的MPPT太阳能锂电池充电器设计

  摘要: 太阳能电池输出曲线具有非线性的特点, 传统太阳能充电器对太阳能电池的利用效率低。文章在经过数学模型分析基础上, 提出采用改变占空比使充电电流的MPPT 跟踪策略, 大幅提高太阳能电池利用率。同时通过BUCK电路与SPCE061 单片机对充电过程进行监控, 采用三段式算法保证锂电池性能, 提高其寿命。通过实验数据对比验证了该方案的实用性和有效性。

  0   引言

  太阳能的绿色与可再生特性, 使其在低碳和能源紧缺的今日备受关注。锂电池因比能量高、自放电低的特性, 逐渐取代铅酸电池成为主流。由目前常用的太阳能电池的输出特性可知, 太阳能电池在一定的光照度和温度下, 既非恒流源, 亦非恒压源, 其功率受负载影响。而锂电池可看作一个小负载电压源。如不加控制直接将二者连接, 则将太阳能电池的工作电压箝位于锂电池工作电压, 无法高效利用能源。

  本文采用SPCE061 单片机, 利用MPPT 技术使太阳能电池工作于功率点, 并且对锂电池的充电过程进行控制, 延长锂电池使用寿命, 保证充电安全。

  1  功率点跟踪技术原理( Maximum Power Point Tracking 简称MPPT)

  太阳能电池有着非线性的光伏特性, 所以即使在同一光照强度下, 由于负载的不同也会输出不同的功率。

  其电压、电流与功率在光照度1 kW/ m2 , T = 25 ℃条件下的输出曲线如图1 所示。其短路电流i sc 与开路电压uoc 由生产商给出, Pmpp为该条件下的功率点。

  由于太阳能电池受到光强、光线入射角度、温度等多种因素的影响, 功率相应改变, 对应功率点的输出电压、输出电流和内阻也在不停变化。因此, 需要使用基于PWM 的可调DC/ DC 变换器, 使负载相应改变, 才能使太阳能电池工作在功率点上。

图1 太阳能电池的典型输出曲线

图1 太阳能电池的典型输出曲线

  2   电路工作原理

  图2 示出太阳能充电器的原理框图。其中微控制器采用凌阳公司生产的SPCE061A 单片机, 该单片机含有7 个10 位ADC( 模-数转换器) 并内置了PWM 功能, 大大简化电路复杂程度, 提高稳定性。电压采样电路与电流采样电路通过ADC 将电压值与电流值送入MCU, MCU 根据MPPT 算法计算PWM 控制BU CK电路完成对充电过程的控制。

图2 整体充电器原理框图

图2 整体充电器原理框图

  图3 为BUCK 变换器电路。由MOSFET 管Q3、电感L1 与继流二极管D1 构成典型的BUCK 降压DC/ DC 变换器, Q1 和Q2 组成MOSFET 管驱动电路, Uout 输出至锂电池正极。

图3 BUCK 变换器电路

图3 BUCK 变换器电路

  图4 为电流采样电路。Rsense 用一小阻值精密电阻作为采样电阻, 通过将电阻两端电压使用差分放大器输送到SPCE061 的A/ D 端进行采样。为使采样, 避免电源线与地线干扰, 使用线性光耦HCNR200 进行隔离。

图4 电流采样电路

图4 电流采样电路

  图5 所示为电压采样电路。因为SPCE061 的A/D 端输入范围为0~ 3 V, 而太阳能电池的输出常常高于3 V, 因此采用反向比例放大器, 使输入与AD 采样范围相匹配。

图5电压采样电路

图5电压采样电路

  3   系统软件设计

  在BUCK 上, 存在UarrD= Ubat 的关系。由此可知:

  式中, Ubat 为电池两端电压; D 为占空比; Uarr 为太阳能电池两端电压。将式( 1) 代入式( 2) 可得:

  由图1 可知, 当取功率点时, dP arr / dUarr = 0,代入式( 3)、( 4) 可知:

  因此, 关于P/ D 的曲线为凸函数, 且当P 取值时有D 值与之对应。

  由于DC/ DC 变换器连接至锂电池两端的输出电压短时间内变化不大, 在短时间可认为恒定。因此, 该设计的功率点跟踪可简化为通过PWM 调整电流至值, 即认为太阳能电池的输出功率达到。

  由锂电池充电特性可知, 为保证充电安全高效, 需采用预充、恒流、涓流的三段式充电。系统通过对锂电池两端电压进行检测, 判断充电状态, 进而采取相应的充电策略。

  当光照强度降低, 程序判断太阳能电池产生的功率小于系统自身开销时, 进入休眠模式。

  4   实验结果与结论

  根据以上原理及其电路图所述, 所制作的MPPT太阳能充电器与用二极管搭建的传统太阳能充电器测试数据对比如表1 所示。其中太阳能电池采用华微公司生产的单晶太阳能电池板, 其输出功率15 W,开路电压17. 4 V; 锂电池组采用4 串联18650 型锂电池, 充电截止电压16. 8 V, 电池组容量10. 4 Ah。

  表1 传统充电器与MPPT充电器实验数据对比

表1 传统充电器与MPPT充电器实验数据对比

  实验结果表明, 传统充电器的太阳能电池利用率约为66 %, 而本方案的MPPT 充电器利用率约为97 %, 输出功率有明显的上升。通过SPCE061 单片机实现的带有MPPT 功能的太阳能充电器不仅大幅提高了太阳能电池利用率, 并包含了三段式充电的智能充电策略, 在软件模块中加入了防止过充电的安全策略, 并且在光照强度大幅下降到低于系统开销的情况下自动实现系统休眠。通过改进算法, 设置更为的参数, 可以使充电效率进一步提高。


责任编辑:

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯

方案推荐
基于MC33771主控芯片的新能源锂电池管理系统解决方案

基于MC33771主控芯片的新能源锂电池管理系统解决方案

AMIC110 32位Sitara ARM MCU开发方案

AMIC110 32位Sitara ARM MCU开发方案

基于AMIC110多协议可编程工业通信处理器的32位Sitara ARM MCU开发方案

基于AMIC110多协议可编程工业通信处理器的32位Sitara ARM MCU开发方案

基于展讯SC9820超低成本LTE芯片平台的儿童智能手表解决方案

基于展讯SC9820超低成本LTE芯片平台的儿童智能手表解决方案

基于TI公司的AM437x双照相机参考设计

基于TI公司的AM437x双照相机参考设计

基于MTK6580芯片的W2智能手表解决方案

基于MTK6580芯片的W2智能手表解决方案