0 卖盘信息
BOM询价
您现在的位置: 首页 > 技术方案 >工业控制 > 基于AD8302型相位检测芯片+IPP-7032型90度电桥芯片的相位差测量系统的改进和设计方案

基于AD8302型相位检测芯片+IPP-7032型90度电桥芯片的相位差测量系统的改进和设计方案

来源: elecfans
2021-06-03
类别:工业控制
eye 31
文章创建人 拍明

原标题:基于AD8302的相位差测量系统的改进和设计方案

  在实际的雷达装备性能测试中,经常会遇到需要检测两个信号之间的相位差的问题,以此来获得一些雷达信号的频率、方位等特性。在研究网络相频特性中,这也是不可缺少的重要方面。因此在某些领域精确地测量两个信号之间的相位差具有重要的意义,比如在比相法测向中。

  美国ADI推出的AD8302型相位检测芯片。该芯片能精确测量2个独立的射频(RF)、中频(IF)或低频信号的增益、相位差及频率。但该芯片的测量相位差的范围只有0°~180°。本文通过提出一种电路结构,使用AD8302进行相位比较,测量相位差的范围可达0°~360°。

  鉴相芯片AD8302简介

  芯片AD8302的功能框图如图1所示,它内部包含2个精密匹配的宽带对数放大器、1个宽带相位检测器、1.8V精密基准源,以及模拟标定电路和接口电路,AD8302能精确测量两个信号之间的幅度和相位差主要基于对数放大器的对数压缩功能,通过精密匹配的两个宽带对数检波器来实现对两输入通道的幅度和相位差测量,能同时测量从低频到2.7GHz频率范围内2个输入信号之间的增益(亦称幅度比)和相位差。AD8302不仅能测量放大器、混频器等电路的增益和相位差,而且特别适合对无线基站及测试设备的检测。

  

image.png


  图1 芯片AD8302的内部功能框图

  从芯片的介绍资料上可知,AD8302的相位差检测的范围是0°~180°,对应的输出电压变化范围是0V~1.8V,输出电压灵敏度为10mV/度,测量误差小于0.5°。当相位差Δφ=0°时,输出电压为1.8V,当Δφ=180°时,输出电压为30mV,输出电流为8mA。相位输出时的转换速率为30MHz,响应时间为40ns~500ns。AD8302的相位差响应曲线如图2所示,从图中可以看出,从-180°~+180°,相位检测结果是用0~1.8V的电压值来表示的,这将引入一个模糊的测量结果。比如当相位变化是45°和-45°时,检测结果将输出1个相同的值,而无法判断是哪个值,因此该芯片的测量范围比较小。这也影响了该芯片的应用范围。

  本设计鉴相电路的介绍

  本设计通过增加一个90度电桥和一个功分器来实现基于AD8302的0°到360°的相位差检测。电路结构如图3所示两路输入的射频信号RF1和RF2,第一路信号RF1通过一个90度的电桥分成两路正交信号φ1,φ1’,第二路信号RF2通过功分器分成两路相位相等的信号φ2。假设两路信号相位差为45°,则图3中上路AD8302检测的相位差φa=φ1-φ2=45°,则下路的AD8302检测的相位差φb=φ1’-φ1=135°。则上路的鉴相输出的电压为135mV,从图2 AD8302的鉴相响应曲线上可知,如果仅仅得知输出电压为135mV的话只能推测两路信号的相位差为45°或-45°,因此需要第二路的鉴相输出电压辅助判断,如果两路信号的相位差是45°则下路的AD8302的两路输入相位差为135度,因此输出电压应为45mV,如果两路输入信号的相位差-45°,则下路的两路输入信号相位差为45度,输出电压应为135mV,这样就可以判断两路信号RF1和RF2的相位差是45°还是-45°。

  

image.png


  图2 AD8302的相位差响应曲线

  


  图3 本设计电路结构图

  具体电路设计

  本设计中90度电桥采用Innovative公司IPP-7032型90度电桥芯片,工作频率为500-3000MHz,插入损耗小于0.6dB,相位平衡度为±5°,满足设计要求。功分器采用mini公司的TCP-2-272+型功分器,工作频率为5-2700MHz,插入损耗小于0.9dB,相位不平衡度优于9°。AD8302的单元电路如图4所示,由于本设计只限于相位差检测,因此将幅度差检测输出脚接一个电阻到地。

  image.png


  图4 AD8302相位检测电路

  电路设计和加工

  为便于调试,功分电桥电路和AD8302鉴相电路分开加工,分开调试合格后通过等长的电缆连接到一起进行联合调试。使用protel 99版图设计软件对本设计电路进行设计,板材选用Rogers4003c,厚度0.508mm,介电常数为3.38。版图设计时应保证电桥输出的两路到AD8302输入端的时候经过的路线长度相同,功分器的输出同样处理,以保证相位差值不变。AD8302部分版图的如图5所示。腔体使用SolidWorks设计软件进行设计,同样分两个腔体设计。最终的设计实物图如图6所示。采用矢量网络分析仪、频率源、示波器对本设计进行测试,鉴相电路满足各设计指标要求,鉴相范围为0°到360°,工作频率可达到500MHz~2700MHz。


  (a)电桥和功分器电路PCB版图


  (b)两路AD8302鉴相电路PCB版图

  图5 本设计版图示意图

  

image.png


  图6 本设计的实物图

  总结

  本设计通过引入90度电桥和功分电路,将两路需要鉴相的信号分成四路分别在两个AD8302芯片中进行相位差检测,通过两路测试结果可以对两路输入信号进行精确鉴相,并且测试相位差范围扩大到0°~360°。扩大了AD8302的应用范围,并通过实际加工测试验证了该电路。测试显示本设计完全可以满足0°~360°的相位差检测。


责任编辑:David

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯

方案推荐
基于MC33771主控芯片的新能源锂电池管理系统解决方案

基于MC33771主控芯片的新能源锂电池管理系统解决方案

AMIC110 32位Sitara ARM MCU开发方案

AMIC110 32位Sitara ARM MCU开发方案

基于AMIC110多协议可编程工业通信处理器的32位Sitara ARM MCU开发方案

基于AMIC110多协议可编程工业通信处理器的32位Sitara ARM MCU开发方案

基于展讯SC9820超低成本LTE芯片平台的儿童智能手表解决方案

基于展讯SC9820超低成本LTE芯片平台的儿童智能手表解决方案

基于TI公司的AM437x双照相机参考设计

基于TI公司的AM437x双照相机参考设计

基于MTK6580芯片的W2智能手表解决方案

基于MTK6580芯片的W2智能手表解决方案