0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >行业趋势 > 基于EDA工具实现PCB高效自动布线的设计技巧和要点?PCB基本设计流程详解?

基于EDA工具实现PCB高效自动布线的设计技巧和要点?PCB基本设计流程详解?

2017-08-03
类别:行业趋势
eye 345
文章创建人 拍明


尽管现在的EDA工具很强大,但随着PCB尺寸要求越来越小,器件密度越来越高,PCB设计的难度并不小。如何实现PCB高的布通率以及缩短设计时间呢?本文介绍PCB规划、布局和布线的设计技巧和要点。 现在PCB设计的时间越来越短,越来越小的电路板空间,越来越高的器件密度,极其苛刻的布局规则和大尺寸的组件使得设计师的工作更加困难。为了解决设计上的困难,加快产品的上市,现在很多厂家倾向于采用专用EDA工具来实现PCB的设计。但专用的EDA工具并不能产生理想的结果,也不能达到100%的布通率,而且很乱,通常还需花很多时间完成余下的工作。

现在市面上流行的EDA工具软件很多,但除了使用的术语和功能键的位置不一样外都大同小异,如何用这些工具更好地实现PCB的设计呢?在开始布线之前对设计进行认真的分析以及对工具软件进行认真的设置将使设计更加符合要求。下面是一般的设计过程和步骤。

1、确定PCB的层数

电路板尺寸和布线层数需要在设计初期确定。如果设计要求使用高密度球栅数组(BGA)组件,就必须考虑这些器件布线所需要的最少布线层数。布线层的数量以及层叠(stack-up)方式会直接影响到印制线的布线和阻抗。板的大小有助于确定层叠方式和印制线宽度,实现期望的设计效果。

多年来,人们总是认为电路板层数越少成本就越低,但是影响电路板的制造成本还有许多其它因素。近几年来,多层板之间的成本差别已经大大减小。在开始设计时最好采用较多的电路层并使敷铜均匀分布,以避免在设计临近结束时才发现有少量信号不符合已定义的规则以及空间要求,从而被迫添加新层。在设计之前认真的规划将减少布线中很多的麻烦。

2、设计规则和限制

自动布线工具本身并不知道应该做些什幺。为完成布线任务,布线工具需要在正确的规则和限制条件下工作。不同的信号线有不同的布线要求,要对所有特殊要求的信号线进行分类,不同的设计分类也不一样。每个信号类都应该有优先级,优先级越高,规则也越严格。规则涉及印制线宽度、过孔的最大数量、平行度、信号线之间的相互影响以及层的限制,这些规则对布线工具的性能有很大影响。认真考虑设计要求是成功布线的重要一步。

3、组件的布局

为最优化装配过程,可制造性设计(DFM)规则会对组件布局产生限制。如果装配部门允许组件移动,可以对电路适当优化,更便于自动布线。所定义的规则和约束条件会影响布局设计。

在布局时需考虑布线路径(routing channel)和过孔区域。这些路径和区域对设计人员而言是显而易见的,但自动布线工具一次只会考虑一个信号,通过设置布线约束条件以及设定可布信号线的层,可以使布线工具能像设计师所设想的那样完成布线。

4、扇出设计

在扇出设计阶段,要使自动布线工具能对组件引脚进行连接,表面贴装器件的每一个引脚至少应有一个过孔,以便在需要更多的连接时,电路板能够进行内层连接、在线测试(ICT)和电路再处理。

为了使自动布线工具效率最高,一定要尽可能使用最大的过孔尺寸和印制线,间隔设置为50mil较为理想。要采用使布线路径数最大的过孔类型。进行扇出设计时,要考虑到电路在线测试问题。测试夹具可能很昂贵,而且通常是在即将投入全面生产时才会订购,如果这时候才考虑添加节点以实现100%可测试性就太晚了。

经过慎重考虑和预测,电路在线测试的设计可在设计初期进行,在生产过程后期实现,根据布线路径和电路在线测试来确定过孔扇出类型,电源和接地也会影响到布线和扇出设计。为降低滤波电容器连接线产生的感抗,过孔应尽可能靠近表面贴装器件的引脚,必要时可采用手动布线,这可能会对原来设想的布线路径产生影响,甚至可能会导致你重新考虑使用哪种过孔,因此必须考虑过孔和引脚感抗间的关系并设定过孔规格的优先级。

5、手动布线以及关键信号的处理

尽管本文主要论述自动布线问题,但手动布线在现在和将来都是印刷电路板设计的一个重要过程。采用手动布线有助于自动布线工具完成布线工作。如图2a和图2b所示,通过对挑选出的网络(net)进行手动布线并加以固定,可以形成自动布线时可依据的路径。

无论关键信号的数量有多少,首先对这些信号进行布线,手动布线或结合自动布线工具均可。关键信号通常必须通过精心的电路设计才能达到期望的性能。布线完成后,再由有关的工程人员来对这些信号布线进行检查,这个过程相对容易得多。检查通过后,将这些线固定,然后开始对其余信号进行自动布线。

6、自动布线

对关键信号的布线需要考虑在布线时控制一些电参数,比如减小分布电感和EMC等,对于其它信号的布线也类似。所有的EDA厂商都会提供一种方法来控制这些参数。在了解自动布线工具有哪些输入参数以及输入参数对布线的影响后,自动布线的质量在一定程度上可以得到保证。

应该采用通用规则来对信号进行自动布线。通过设置限制条件和禁止布线区来限定给定信号所使用的层以及所用到的过孔数量,布线工具就能按照工程师的设计思想来自动布线。如果对自动布线工具所用的层和所布过孔的数量不加限制,自动布线时将会使用到每一层,而且将会产生很多过孔。

在设置好约束条件和应用所创建的规则后,自动布线将会达到与预期相近的结果,当然可能还需要进行一些整理工作,同时还需要确保其它信号和网络布线的空间。在一部分设计完成以后,将其固定下来,以防止受到后边布线过程的影响。

采用相同的步骤对其余信号进行布线。布线次数取决于电路的复杂性和你所定义的通用规则的多少。每完成一类信号后,其余网络布线的约束条件就会减少。但随之而来的是很多信号布线需要手动干预。现在的自动布线工具功能非常强大,通常可完成100%的布线。但是当自动布线工具未完成全部信号布线时,就需对余下的信号进行手动布线。

7、自动布线的设计要点包括:

7.1 略微改变设置,试用多种路径布线;

7.2 保持基本规则不变,试用不同的布线层、不同的印制线和间隔宽度以及不同线宽、不同类型的过孔如盲孔、埋孔等,观察这些因素对设计结果有何影响;

7.3让布线工具对那些默认的网络根据需要进行处理;

7.4信号越不重要,自动布线工具对其布线的自由度就越大。

8、布线的整理

如果你所使用的EDA工具软件能够列出信号的布线长度,检查这些数据,你可能会发现一些约束条件很少的信号布线的长度很长。这个问题比较容易处理,通过手动编辑可以缩短信号布线长度和减少过孔数量。在整理过程中,你需要判断出哪些布线合理,哪些布线不合理。同手动布线设计一样,自动布线设计也能在检查过程中进行整理和编辑。

9、电路板的外观

以前的设计常常注意电路板的视觉效果,现在不一样了。自动设计的电路板不比手动设计的美观,但在电子特性上能满足规定的要求,而且设计的完整性能得到保证。


PCB是什么?

PCB(Printed Circuit Board),中文名称为印制电路板,是电子元器件的支撑体,也是电子元器件电气连接的提供者。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。PCB是电子工业的重要部件之一,几乎每种电子设备,小到电子手表、计算器,大到计算机,通讯电子设备,军用武器系统,只要有集成电路等电子元器件,都要使用印制电路板。

PCB是什么.jpg

PCB设计基础知识

印刷电路板(Printed circuitboard,PCB)几乎会出现在每一种电子设备当中。如果在某样设备中有电子零件,那么它们也都是镶在大小各异的PCB上。除了固定各种小零件外,

PCB的主要功能是提供上头各项零件的相互电气连接。随着电子设备越来越复杂,需要的零件越来越多,PCB上头的线路与零件也越来越密集了。

标准的PCB长得就像这样。裸板(上头没有零件)也常被称为「印刷线路板Printed Wiring Board(PWB)」。

板子本身的基板是由绝缘隔热、并不易弯曲的材质所制作成。在表面可以看到的细小线路材料是铜箔,原本铜箔是覆盖在整个板子上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。这些线路被称作导线(conductor pattern)或称布线,并用来提供PCB上零件的电路连接。

为了将零件固定在PCB上面,我们将它们的接脚直接焊在布线上。在最基本的PCB(单面板)上,零件都集中在其中一面,导线则都集中在另一面。这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,PCB的正反面分别被称为零件面(ComponentSide)与焊接面(Solder Side)。

如果PCB上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座(Socket)。由于插座是直接焊在板子上的,零件可以任意的拆装。下面看到的是ZIF(Zero InsertionForce,零拨插力式)插座,它可以让零件(这里指的是CPU)可以轻松插进插座,也可以拆下来。插座旁的固定杆,可以在您插进零件后将其固定。

如果要将两块PCB相互连结,一般我们都会用到俗称「金手指」的边接头(edgeconnector)。金手指上包含了许多裸露的铜垫,这些铜垫事实上也是PCB布线的一部份。通常连接时,我们将其中一片PCB上的金手指插进另一片PCB上合适的插槽上(一般叫做扩充槽Slot)。在计算机中,像是显示卡,声卡或是其它类似的界面卡,都是借着金手指来与主机板连接的。

PCB上的绿色或是棕色,是阻焊漆(soldermask)的颜色。这层是绝缘的防护层,可以保护铜线,也可以防止零件被焊到不正确的地方。在阻焊层上另外会印刷上一层丝网印刷面(silkscreen)。通常在这上面会印上文字与符号(大多是白色的),以标示出各零件在板子上的位置。丝网印刷面也被称作图标面(legend)。

单面板(Single-Sided Boards)

我们刚刚提到过,在最基本的PCB上,零件集中在其中一面,导线则集中在另一面上。因为导线只出现在其中一面,所以我们就称这种PCB叫作单面板(Single-sided)。因为单面板在设计线路上有许多严格的限制(因为只有一面,布线间不能交叉而必须绕独自的路径),所以只有早期的电路才使用这类的板子。

双面板(Double-Sided Boards)

这种电路板的两面都有布线。不过要用上两面的导线,必须要在两面间有适当的电路连接才行。这种电路间的「桥梁」叫做导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。因为双面板的面积比单面板大了一倍,而且因为布线可以互相交错(可以绕到另一面),它更适合用在比单面板更复杂的电路上。

多层板(Multi-Layer Boards)

为了增加可以布线的面积,多层板用上了更多单或双面的布线板。多层板使用数片双面板,并在每层板间放进一层绝缘层后黏牢(压合)。板子的层数就代表了有几层独立的布线层,通常层数都是偶数,并且包含最外侧的两层。大部分的主机板都是4到8层的结构,不过技术上可以做到近100层的PCB板。大型的超级计算机大多使用相当多层的主机板,不过因为这类计算机已经可以用许多普通计算机的集群代替,超多层板已经渐渐不被使用了。因为PCB中的各层都紧密的结合,一般不太容易看出实际数目,不过如果您仔细观察主机板,也许可以看出来。

我们刚刚提到的导孔(via),如果应用在双面板上,那么一定都是打穿整个板子。不过在多层板当中,如果您只想连接其中一些线路,那么导孔可能会浪费一些其它层的线路空间。埋孔(Buriedvias)和盲孔(Blindvias)技术可以避免这个问题,因为它们只穿透其中几层。盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。埋孔则只连接内部的PCB,所以光是从表面是看不出来的。

在多层板PCB中,整层都直接连接上地线与电源。所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。

零件封装技术

插入式封装技术(Through Hole Technology)

将零件安置在板子的一面,并将接脚焊在另一面上,这种技术称为「插入式(Through Hole

Technology,THT)」封装。这种零件会需要占用大量的空间,并且要为每只接脚钻一个洞。所以它们的接脚其实占掉两面的空间,而且焊点也比较

大。但另一方面,THT零件和SMT(Surface Mounted

Technology,表面黏着式)零件比起来,与PCB连接的构造比较好,关于这点我们稍后再谈。像是排线的插座,和类似的界面都需要能耐压力,所以通

常它们都是THT封装。

表面黏贴式封装技术(Surface Mounted Technology)

使用表面黏贴式封装(Surface Mounted Technology,SMT)的零件,接脚是焊在与零件同一面。这种技术不用为每个接脚的焊接,而都在PCB上钻洞。

表面黏贴式的零件,甚至还能在两面都焊上。

SMT也比THT的零件要小。和使用THT零件的PCB比起来,使用SMT技术的PCB板上零件要密集很多。SMT封装零件也比THT的要便宜。所以现今的PCB上大部分都是SMT,自然不足为奇。

因为焊点和零件的接脚非常的小,要用人工焊接实在非常难。不过如果考虑到目前的组装都是全自动的话,这个问题只会出现在修复零件的时候吧。

设计流程

在PCB的设计中,其实在正式布线前,还要经过很漫长的步骤,以下就是主要设计的流程:

系统规格

首先要先规划出该电子设备的各项系统规格。包含了系统功能,成本限制,大小,运作情形等等。

接下来必须要制作出系统的功能方块图。方块间的关系也必须要标示出来。

将系统分割几个PCB

将系统分割数个PCB的话,不仅在尺寸上可以缩小,也可以让系统具有升级与交换零件的能力。系统功能方块图就提供了我们分割的依据。像是计算机就可以分成主机板、显示卡、声卡、软盘驱动器和电源等等。

决定使用封装方法,和各PCB的大小

当各PCB使用的技术和电路数量都决定好了,接下来就是决定板子的大小了。如果设计的过大,那么封装技术就要改变,或是重新作分割的动作。在选择技术时,也要将线路图的品质与速度都考量进去。

概图中要表示出各零件间的相互连接细节。所有系统中的PCB都必须要描出来,现今大多采用CAD(计算机辅助设计,Computer Aided Design)的方式。下面就是使用CircuitMakerTM设计的范例。

初步设计的仿真运作

为了确保设计出来的电路图可以正常运作,这必须先用计算机软件来仿真一次。这类软件可以读取设计图,并且用许多方式显示电路运作的情况。这比起实际做出一块样本PCB,然后用手动测量要来的有效率多了。

将零件放上PCB

零件放置的方式,是根据它们之间如何相连来决定的。它们必须以最有效率的方式与路径相连接。所谓有效率的布线,就是牵线越短并且通过层数越少(这也同时减少导孔的数目)越好,不过在真正布线时,我们会再提到这个问题。下面是总线在PCB上布线的样子。为了让各零件都能够拥有完美的配线,放置的位置是很重要的。

测试布线可能性,与高速下的正确运作

现今的部份计算机软件,可以检查各零件摆设的位置是否可以正确连接,或是检查在高速运作下,这样是否可以正确运作。这项步骤称为安排零件,不过我们不会太深入研究这些。如果电路设计有问题,在实地导出线路前,还可以重新安排零件的位置。

导出PCB上线路

在概图中的连接,现在将会实地作成布线的样子。这项步骤通常都是全自动的,不过一般来说还是需要手动更改某些部份。下面是2层板的导线模板。红色和蓝色的线

条,分别代表PCB的零件层与焊接层。白色的文字与四方形代表的是网版印刷面的各项标示。红色的点和圆圈代表钻洞与导孔。最右方我们可以看到PCB上的焊

接面有金手指。这个PCB的最终构图通常称为工作底片(Artwork)。

每一次的设计,都必须要符合一套规定,像是线路间的最小保留空隙,最小线路宽度,和其它类似的实际限制等。这些规定依照电路的速度,传送信号的强弱,电路对耗电与噪声的敏感度,以及材质品质与制造设备等因素而有不同。如果电流强度上升,那导线的粗细也必须要增加。为了减少PCB的成本,在减少层数的同时,也必须要注意这些规定是否仍旧符合。如果需要超过2层的构造的话,那么通常会使用到电源层以及地线层,来避免信号层上的传送信号受到影响,并且可以当作信号层的防护罩。

导线后电路测试

为了确定线路在导线后能够正常运作,它必须要通过最后检测。这项检测也可以检查是否有不正确的连接,并且所有联机都照着概图走。

建立制作档案

因为目前有许多设计PCB的CAD工具,制造厂商必须有符合标准的档案,才能制造板子。标准规格有好几种,不过最常用的是Gerber

files规格。一组Gerber files包括各信号、电源以及地线层的平面图,阻焊层与网板印刷面的平面图,以及钻孔与取放等指定档案。

电磁兼容问题没有照EMC(电磁兼容)规格设计的电子设备,很可能会散发出电磁能量,并且干扰附近的电器。EMC对电磁干扰(EMI),电磁场(EMF)和射频干扰

(RFI)等都规定了最大的限制。这项规定可以确保该电器与附近其它电器的正常运作。EMC对一项设备,散射或传导到另一设备的能量有严格的限制,并且设计时要减少对外来EMF、EMI、RFI等的磁化率。换言之,这项规定的目的就是要防止电磁能量进入或由装置散发出。这其实是一项很难解决的问题,一般大多会使用电源和地线层,或是将PCB放进金属盒子当中以解决这些问题。电源和地线层可以防止信号层受干扰,金属盒的效用也差不多。对这些问题我们就不过于深入了。

电路的最大速度得看如何照EMC规定做了。内部的EMI,像是导体间的电流耗损,会随着频率上升而增强。如果两者之间的的电流差距过大,那么一定要拉长两者间的距离。这也告诉我们如何避免高压,以及让电路的电流消耗降到最低。布线的延迟率也很重要,所以长度自然越短越好。所以布线良好的小PCB,会比大PCB更适合在高速下运作。

制造流程

PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的「基板」开始影像(成形/导线制作)制作的第一步是建立出零件间联机的布线。我们采用负片转印(Subtractivetransfer)方式将工作底片表现在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。追加式转印(AdditivePattern transfer)是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。

如果制作的是双面板,那么PCB的基板两面都会铺上铜箔,如果制作的是多层板,接下来的步骤则会将这些板子黏在一起。接下来的流程图,介绍了导线如何焊在基板上。

正光阻剂(positivephotoresist)是由感光剂制成的,它在照明下会溶解(负光阻剂则是如果没有经过照明就会分解)。有很多方式可以处理铜表面的光阻剂,不过最普遍的方式,是将它加热,并在含有光阻剂的表面上滚动(称作干膜光阻剂)。它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。

遮光罩只是一个制造中PCB层的模板。在PCB板上的光阻剂经过UV光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光(假设用的是正光阻剂)。这些被光阻剂盖住的地方,将会变成布线。

在光阻剂显影之后,要蚀刻的其它的裸铜部份。蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。一般用作蚀刻溶剂的有,氯化铁(FerricChloride),碱性氨(Alkaline Ammonia),硫酸加过氧化氢(Sulfuric Acid + HydrogenPeroxide),和氯化铜(Cupric Chloride)等。蚀刻结束后将剩下的光阻剂去除掉。这称作脱膜(Stripping)程序。

钻孔与电镀

如果制作的是多层PCB板,并且里头包含埋孔或是盲孔的话,每一层板子在黏合前必须要先钻孔与电镀。如果不经过这个步骤,那么就没办法互相连接了。

在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole

technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧

物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学制程中完成。

多层PCB压合

各单片层必须要压合才能制造出多层板。压合动作包括在各层间加入绝缘层,以及将彼此黏牢等。如果有透过好几层的导孔,那么每层都必须要重复处理。多层板的外侧两面上的布线,则通常在多层板压合后才处理。

处理阻焊层、网版印刷面和金手指部份电镀

接下来将阻焊漆覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份外了。网版印刷面则印在其上,以标示各零件的位置,它不能够覆盖在任何布线或是金手

指上,不然可能会减低可焊性或是电流连接的稳定性。金手指部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。

测试

测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。

零件安装与焊接

最后一项步骤就是安装与焊接各零件了。无论是THT与SMT零件都利用机器设备来安装放置在PCB上。

THT零件通常都用叫做波峰焊接(WaveSoldering)的方式来焊接。这可以让所有零件一次焊接上PCB。首先将接脚切割到靠近板子,并且稍微弯曲以让零件能够固定。接着将PCB移到助溶

剂的水波上,让底部接触到助溶剂,这样可以将底部金属上的氧化物给除去。在加热PCB后,这次则移到融化的焊料上,在和底部接触后焊接就完成了。

自动焊接SMT零件的方式则称为再流回焊接(Over Reflow Soldering)。里头含有助溶剂与焊料的糊状焊接物,在零件安装在PCB上后先处理一次,经过PCB加热后再处理一次。待PCB冷却之后焊接就完成了,接下来就是准备进行PCB的最终测试了节省制造成本的方法

为了让PCB的成本能够越低越好,有许多因素必须要列入考量:

板子的大小自然是个重点。板子越小成本就越低。部份的PCB尺寸已经成为标准,只要照着尺寸作那么成本就自然会下降。CustomPCB网站上有一些关于标准尺寸的信息。

使用SMT会比THT来得省钱,因为PCB上的零件会更密集(也会比较小)。

另一方面,如果板子上的零件很密集,那么布线也必须更细,使用的设备也相对的要更高阶。同时使用的材质也要更高级,在导线设计上也必须要更小心,以免造成耗电等会对电路造成影响的问题。这些问题带来的成本,可比缩小PCB尺寸所节省的还要多。

层数越多成本越高,不过层数少的PCB通常会造成大小的增加。

钻孔需要时间,所以导孔越少越好。

埋孔比贯穿所有层的导孔要贵。因为埋孔必须要在接合前就先钻好洞。

板子上孔的大小是依照零件接脚的直径来决定。如果板子上有不同类型接脚的零件,那么因为机器不能使用同一个钻头钻所有的洞,相对的比较耗时间,也代表制造成本相对提升。

使用飞针式探测方式的电子测试,通常比光学方式贵。一般来说光学测试已经足够保证PCB上没有任何错误。

总而言之,厂商在设备上下的工夫也是越来越复杂了。了解PCB的制造过程是很有用的,因为当我们在比较主机板时,相同效能的板子成本可能不同,稳定性也各异,这也让我们得以比较各厂商的能力。


PCB基本设计流程详解

一般PCB基本设计流程如下:前期准备->PCB结构设计->PCB布局->布线->布线优化和丝印->网络和DRC检查和结构检查->制版。

PCB基本设计流程详解.jpg

第一:前期准备。这包括准备元件库和原理图。“工欲善其事,必先利其器”,要做出一块好的板子,除了要设计好原理之外,还要画得好。在进行PCB设计之前,首先要准备好原理图SCH的元件库和PCB的元件库。元件库可以用peotel自带的库,但一般情况下很难找到合适的,最好是自己根据所选器件的标准尺寸资料自己做元件库。原则上先做PCB的元件库,再做SCH的元件库。PCB的元件库要求较高,它直接影响板子的安装;SCH的元件库要求相对比较松,只要注意定义好管脚属性和与PCB元件的对应关系就行。PS:注意标准库中的隐藏管脚。之后就是原理图的设计,做好后就准备开始做PCB设计了。

第二:PCB结构设计。这一步根据已经确定的电路板尺寸和各项机械定位,在PCB设计环境下绘制PCB板面,并按定位要求放置所需的接插件、按键/开关、螺丝孔、装配孔等等。并充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。

第三:PCB布局。布局说白了就是在板子上放器件。这时如果前面讲到的准备工作都做好的话,就可以在原理图上生成网络表(Design->CreateNetlist),之后在PCB图上导入网络表(Design->LoadNets)。就看见器件哗啦啦的全堆上去了,各管脚之间还有飞线提示连接。然后就可以对器件布局了。一般布局按如下原则进行:

①.按电气性能合理分区,一般分为:数字电路区(即怕干扰、又产生干扰)、模拟电路区(怕干扰)、功率驱动区(干扰源);

②.完成同一功能的电路,应尽量靠近放置,并调整各元器件以保证连线最为简洁;同时,调整各功能块间的相对位置使功能块间的连线最简洁;

③.对于质量大的元器件应考虑安装位置和安装强度;发热元件应与温度敏感元件分开放置,必要时还应考虑热对流措施;

④.I/O驱动器件尽量靠近印刷板的边、靠近引出接插件;

⑤.时钟产生器(如:晶振或钟振)要尽量靠近用到该时钟的器件;

⑥.在每个集成电路的电源输入脚和地之间,需加一个去耦电容(一般采用高频性能好的独石电容);电路板空间较密时,也可在几个集成电路周围加一个钽电容。

⑦.继电器线圈处要加放电二极管(1N4148即可);

⑧.布局要求要均衡,疏密有序,不能头重脚轻或一头沉。

需要特别注意:在放置元器件时,一定要考虑元器件的实际尺寸大小(所占面积和高度)、元器件之间的相对位置,以保证电路板的电气性能和生产安装的可行性和便利性同时,应该在保证上面原则能够体现的前提下,适当修改器件的摆放,使之整齐美观,如同样的器件要摆放整齐、方向一致,不能摆得“错落有致”。这个步骤关系到板子整体形象和下一步布线的难易程度,所以一点要花大力气去考虑。布局时,对不太肯定的地方可以先作初步布线,充分考虑。

第四:布线。布线是整个PCB设计中最重要的工序。这将直接影响着PCB板的性能好坏。在PCB的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB设计时的最基本的要求。如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门。其次是电器性能的满足。这是衡量一块印刷电路板是否合格的标准。这是在布通之后,认真调整布线,使其能达到最佳的电器性能。接着是美观。假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块。这样给测试和维修带来极大的不便。布线要整齐划一,不能纵横交错毫无章法。这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了。布线时主要按以下原则进行:

①.一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线一般为1.2~2.5mm。对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地则不能这样使用)

②.预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。

③.振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;

④.尽可能采用45度的折线布线,不可使用90度折线,以减小高频信号的辐射;(要求高的线还要用双弧线)

⑤.任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;

⑥.关键的线尽量短而粗,并在两边加上保护地。

⑦.通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出。分页

⑧.关键信号应预留测试点,以方便生产和维修检测用

⑨.原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。

——PCB布线工艺要求:

①.线

一般情况下,信号线宽为0.3mm(12mil),电源线宽为0.77mm(30mil)或1.27mm(50mil);线与线之间和线与焊盘之间的距离大于等于0.33mm(13mil),实际应用中,条件允许时应考虑加大距离;布线密度较高时,可考虑(但不建议)采用IC脚间走两根线,线的宽度为0.254mm(10mil),线间距不小于0.254mm(10mil)。

特殊情况下,当器件管脚较密,宽度较窄时,可按适当减小线宽和线间距。

②.焊盘(PAD)

焊盘(PAD)与过渡孔(VIA)的基本要求是:盘的直径比孔的直径要大于0.6mm;例如,通用插脚式电阻、电容和集成电路等,采用盘/孔尺寸1.6mm/0.8mm(63mil/32mil),插座、插针和二极管1N4007等,采用1.8mm/1.0mm(71mil/39mil)。实际应用中,应根据实际元件的尺寸来定,有条件时,可适当加大焊盘尺寸;PCB板上设计的元件安装孔径应比元件管脚的实际尺寸大0.2~0.4mm左右。

③.过孔(VIA)

一般为1.27mm/0.7mm(50mil/28mil);

当布线密度较高时,过孔尺寸可适当减小,但不宜过小,可考虑采用1.0mm/0.6mm(40mil/24mil)。

④.焊盘、线、过孔的间距要求

PADandVIA:≥0.3mm(12mil)

PADandPAD:≥0.3mm(12mil)

PADandTRACK:≥0.3mm(12mil)

TRACKandTRACK:≥0.3mm(12mil)

密度较高时:

PADandVIA:≥0.254mm(10mil)

PADandPAD:≥0.254mm(10mil)

PADandTRACK:≥0.254mm(10mil)

TRACKandTRACK:≥0.254mm(10mil)

第五:布线优化和丝印。“没有最好的,只有更好的”!不管你怎么挖空心思的去设计,等你画完之后,再去看一看,还是会觉得很多地方可以修改的。一般设计的经验是:优化布线的时间是初次布线的时间的两倍。感觉没什么地方需要修改之后,就可以铺铜了(Place->polygonPlane)。铺铜一般铺地线(注意模拟地和数字地的分离),多层板时还可能需要铺电源。时对于丝印,要注意不能被器件挡住或被过孔和焊盘去掉。同时,设计时正视元件面,底层的字应做镜像处理,以免混淆层面。

第六:网络和DRC检查和结构检查。首先,在确定电路原理图设计无误的前提下,将所生成的PCB网络文件与原理图网络文件进行物理连接关系的网络检查(NETCHECK),并根据输出文件结果及时对设计进行修正,以保证布线连接关系的正确性;网络检查正确通过后,对PCB设计进行DRC检查,并根据输出文件结果及时对设计进行修正,以保证PCB布线的电气性能。最后需进一步对PCB的机械安装结构进行检查和确认。

第七:制版。在此之前,最好还要有一个审核的过程。

PCB设计是一个考心思的工作,谁的心思密,经验高,设计出来的板子就好。所以设计时要极其细心,充分考虑各方面的因数(比如说便于维修和检查这一项很多人就不去考虑),精益求精,就一定能设计出一个好板子。


责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: PCB EDA

相关资讯