0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >行业趋势 > 半导体材料有哪些以及是如何应用的呢

半导体材料有哪些以及是如何应用的呢

2017-05-18
类别:行业趋势
eye 270
文章创建人 拍明

  半导体是一种介于导电与不导电之间的一种材料,是可用来制作半导体器件和集成电路的电子材料。在现在社会中半导体材料的应用很广泛,下面小编简单介绍下半导体材料的应用吧。

  半导体材料的应用

  制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。

  半导体材料所有的半导体材料都需要对原料进行提纯,要求的纯度在6“9”以上,最高达11“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯;另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。

  绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶、大部分锗单晶和锑化铟单晶是用此法生产的,其中硅单晶的最大直径已达300毫米。在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。

半导体材料有哪些以及是如何应用的呢.jpg

  在单晶衬底上生长单晶薄膜称为外延。外延的方法有气相、液相、固相、分子束外延等。工业生产使用的主要是化学气相外延,其次是液相外延。金属有机化合物气相外延和分子束外延则用于制备量子阱及超晶格等微结构。

  非晶、微晶、多晶薄膜多在玻璃、陶瓷、金属等衬底上用不同类型的化学气相沉积、磁控溅射等方法制成。

  常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。化合物半导体分为二元系、三元系、多元系和有机化合物半导体。二元系化合物半导体有Ⅲ-Ⅴ(如砷化镓、磷化镓、磷化铟等)Ⅱ-Ⅵ(如硫化镉、硒化镉、碲化锌、硫化锌等)Ⅳ-Ⅵ(如硫化铅、硒化铅等)Ⅳ-Ⅳ(如碳化硅)化合物。三元系和多元系化合物半导体主要为三元和多元固溶体,如镓铝砷固溶体、镓锗砷磷固溶体等。有机化合物半导体有萘、蒽、聚丙烯腈等,还处于研究阶段。  此外,还有非晶态和液态半导体材料,这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。

  ] 硅是集成电路产业的基础,半导体材料中98%是硅,半导体硅工业产品包括多晶硅、单晶硅(直拉和区熔)、外延片和非晶硅等,其中,直拉硅单晶广泛应用于集成电路和中小功率器件。区域熔单晶目前主要用于大功率半导体器件,比如整流二极管,硅可控整流器,大功率晶体管等。单晶硅和多晶硅应用最广。

  中彰国际(SINOSI)是一家致力于尖端科技、开拓创新的公司。中彰国际(SINOSI)能够规模生产和大批量供应单晶硅、多晶硅及Φ4″- Φ6″直拉抛光片、 Φ3″- Φ6″直拉磨片和区熔NTD磨片并且可以按照国内、外客户的要求提供非标产品。

  单晶硅

  单晶硅主要有直拉和区熔

  区熔(NTD)单晶硅可生产直径范围为:Φ1.5″- Φ4″。直拉单晶硅可生产直径范围为:Φ2″-Φ8″

  各项参数可按客户要求生产。

  多晶硅

  区熔用多晶硅:可生产直径Φ40mm-Φ70mm。直径公差(Tolerance)≤10%,施主水平>300Ω.㎝,受主水平>3000Ω.㎝,碳含量<2×1016at/3 。各项参数可按客户要求生产。

  切磨片

  切磨片可生产直径范围为:Φ1.5″- Φ6″。厚度公差、总厚度公差、翘曲度、电阻率等参数符合并优于国家现行标准,并可按客户要求生产。

  抛光片

  抛光片可生产直径范围为:Φ2″- Φ6″,厚度公差、总厚度公差、翘曲度、平整度、电阻率等参数符合并优于国家现行标准,并可按客户要求生产。

  高纯的单晶硅棒是单晶硅太阳电池的原料,硅纯度要求99.999%。单晶硅太阳电池是当前开发得最快的一种太阳电池,它的构和生产工艺已定型,产品已广泛用于空间和地面。为了降低生产成本,现在地面应用的太阳电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳电池专用的单晶硅棒。

  单晶硅是转化太阳能、电能的主要材料。在日常生活里,单晶硅可以说无处不在,电视、电脑、冰箱、电话、汽车等等,处处离不开单晶硅材料;在高科技领域,航天飞机、宇宙飞船、人造卫星的制造,单晶硅同样是必不可少的原材料。

  在科学技术飞速发展的今天,利用单晶硅所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能单晶硅的利用将普及到全世界范围,市场需求量不言而喻。

  直拉硅单晶广泛应用于集成电路和中小功率器件。区域熔单晶目前主要用于大功率半导体器件,比如整流二极管,硅可控整流器,大功率晶体管等。

  区熔(NTD)单晶硅可生产直径范围为:Φ1.5″- Φ4″

  直拉单晶硅可生产直径范围为:Φ2″-Φ8″

半导体材料.jpg

  硅单晶被称为现代信息社会的基石。硅单晶按照制备工艺的不同可分为直拉(CZ)单晶硅和区熔(FZ)单晶硅,直拉单晶硅被广泛应用于微电子领域,微电子技术的飞速发展,使人类社会进入了信息化时代,被称为硅片引起的第一次革命。区熔单晶硅是利用悬浮区熔技术制备的单晶硅。它的用途主要包括以下几个方面。

  1、制作电力电子器件

  电力电子技术是实现电力管理,提高电功效率的关键技术。飞速发展的电力电子被称为硅片引起的第二次革命,大多数电力电子器件是用区熔单晶硅制作的。电力电子器件包括普通晶闸管(SCR)、电力晶体管GTRGTO以及第三代新型电力电子器件——功率场效应晶体管(MOSFET)和绝缘栅双极晶体管(IGBT)以及功率集成电路(PIC)等,广泛应用于高压直流输电、静止无功补偿、电力机车牵引、交直流电力传动、电解、励磁、电加热、高性能交直流电源等电力系统和电气工程中。制作电力电子器件,是区熔单晶硅的传统市场,也是本项目产品的市场基础。

  2、制作高效率太阳能光伏电池

  太阳能目前已经成为最受关注的绿色能源产业。美国、欧洲、日本都制定了大力促进本国太阳能产业发展的政策,我国也于20053月份通过了《可再生能源法》。这些措施极大地促进了太阳能电池产业的发展。据统计,从1998—2004年,国际太阳能光伏电池的市场一直保持高速增长的态势,年平均增长速度达到30%,预计到2010年,仍将保持至少25%的增长速度。

  晶体硅是目前应用最成熟,最广泛的太阳能电池材料,占光伏产业的85%以上。美国SunPower公司最近开发出利用区熔硅制作太阳能电池技术,其产业化规模光电转换效率达到20%,为目前产业化最高水平,其综合性价比超过直拉单晶硅太阳能电池(光电转换效率为15%)和多晶硅太阳能电池(光电转换效率为12%)。这项新技术将会极大地扩展区熔硅单晶的市场空间。据估计,到2010年,其总的市场规模到将达到电力电子需求规模,这是本项目新的市场机会。

  3、制作射频器件和微电子机械系统(MEMS)

  区熔单晶还可以用来制作部分分立器件。另外采用高阻区熔硅制造微波单片集成电路(MMIC)以及微电子机械系统(MEMS)等高端微电子器件,被广泛应用于微波通讯、雷达、导航、测控、医学等领域,显示出巨大的应用前景。这也是区熔单晶的又一个新兴的市场机会。

  4、制作各种探测器、传感器,远红外窗口

  探测器、传感器是工业自动化的关键元器件,被广泛应用于光探测、光纤通讯、工业自动化控制系统中以及医疗、军事、电讯、工业自动化等领域。高纯的区熔硅单晶是制作各种探测器、传感器的关键原材料,其市场增长趋势也很明显。

 


责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯