0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >行业趋势 > 电容器充电的原理及出现的问题

电容器充电的原理及出现的问题

2017-08-21
类别:行业趋势
eye 613
文章创建人 拍明

  当电容器接通电源以后,在电场力的作用下,与电源正极相接电容器极板的 自由电子将经过电源移到与电源负极相接的极板下, 正极由于失去负电荷而带正电, 负 极由于获得负电荷而带负电,正,负极板所带电荷大小相等,符号相反,见图.电荷定 向移动形成电流,由于同性电荷的排斥作用,所以开始电流最大,以后逐渐减小,在电 荷移动过程中,电容器极板储存的电荷不断增加,电容器两极板间电压 UC 等于电源电 压 U 时电荷停止移动,电流 I=0,:开关闭合,通过导线的连接作用,电容器正负极板电荷中和掉. 当 K 闭合时,电容器 C 正极正电荷可以移动 负极上中和掉,负极负电荷也可以移到正极中和掉,电荷逐渐减少,表现电流减小,电 压也 逐渐减小为零.


  电容器充电过程


  1. 关于电流的问题可以用一行座位来比方。当座位坐满了人的时候,可以看作人和座位都是不动的。当最前面有一人缺席的时候,就出现了一个空位。这时候第二个座位上的人往第一个座位移动,第二个座位又成了第二个空位。同理,后面的人都依次往自己前面的空位移动。结果本来是所有的人都往前面移动了一个座位的位置,但实际也是空位往人移动的相反方向移动到最后的位置了。电流也是负电荷(电子)在移动,但失去电子就带正电荷,所以也可以看成正电荷在移动。但正电荷与负电荷的移动方向是相反的,这样,电流的方向就不确定了,为了统一确定电流的方向,人们就规定了正电荷移动的方向是电流的方向。

  原本不带电的电容器接上电源后,在电压的作用下,正电荷与负电荷分别从电源个正极和负极向电容器极板流动。我们把储存正电荷与负电荷的电容器的俩极板分别叫做正极板和负极板。

电容器充电过程.jpg

  2. 原本不带电的电容器接上电源后,在电压的作用下,正电荷与负电荷分别从电源个正极和负极向电容器极板流动。这就是开始接通电源的瞬间电流最大,随着电容器的俩极板积聚的电荷增多,俩极板的电位也逐步接近电源正、负极电位,流向电容的电流变小,当俩极板的电位等于电源正、负极电位的时候,流向电容的电流就没有了。所以就有了你说的充电的时候,电路只是瞬间有电流。

  3. 当电容器俩极板的电位等于电源正、负极电位的时候,电容器正、负极板积聚的正、负电荷数量是相等的,所以充电后两电极板带等量异种电荷。


  电容器充电的问题


  超级电容的特点

  超级电容的容量比通常的电容器大得多。由于其容量很大,对外表现和电池相同,因此也有称作“电容电池”。 超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

  (1)充电速度快,充电10秒~10分钟可达到其额定容量的95%以上; (2)循环使用寿命长,深度充放电循环使用次数可达1~50万次,没有“记忆效应”;

  (3)大电流放电能力超强,能量转换效率高,过程损失小,大电流能量循环效率≥90%; (4)功率密度高,可达300W/KG~5000W/KG,相当于电池的5~10倍;

  (5)产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源;

  (6)充放电线路简单,无需充电电池那样的充电电路,安全系数高,长期使用免维护;

  (7)超低温特性好,温度范围宽-40℃~+70℃;

  (8)检测方便,剩余电量可直接读出;

  (9)容量范围通常0.1F--1000F 。 法拉(farad),简称“法”,符号是F 1法拉是电容存储1库仑电量时,两极板间电势差是1伏特1F=1C/1V 1库仑是1A电流在1s内输运的电量,即1C=1A·S。 1库仑=1安培·秒 1法拉=1安培·秒/伏特

  电瓶(蓄电池)12伏14安时的放电量=14*3600/12=4200 法拉(F) 地球的电容值仅有1-2F左右 超级电容与电池比较,有如下特性:

  a.超低串联等效电阻(LOW ESR),功率密度(Power Density)是锂离子电池的数十倍以上,适合大电流放电,(一枚4.7F电容能释放瞬间电流18A以上)。

  b. 超长寿命,充放电大于50万次,是Li-Ion电池的500倍,是Ni-MH和Ni-Cd电池的1000倍,如果对超级电容每天充放电20次,连续使用可达68年。

  c. 可以大电流充电,充放电时间短,对充电电路要求简单,无记忆效应。

  d. 免维护,可密封。

  e.温度范围宽-40℃~+70℃,一般电池是-20℃~60℃。

  补充

  ◆ 超级电容器(supercapacitor,ultracapacitor),又叫双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。

  ◆ 超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。(见图1) 一、超级电容器为何不同于传统电容器其'超级'在哪?

  ◆ 超级电容器在分离出的电荷中存储能量,用于存储电荷的面积越大、分离出的电荷越密集,其电容量越大。

  ◆ 传统电容器的面积是导体的平板面积,为了获得较大的容量,导体材料卷制得很长,有时用特殊的组织结构来增加它的表面积。传统电容器是用绝缘材料分离它的两极板,一般为塑料薄膜、纸等,这些材料通常要求尽可能的薄。

  ◆ 超级电容器的面积是基于多孔炭材料,该材料的多孔结够允许其面积达到2000m2/g,通过一些措施可实现更大的表面积。超级电容器电荷分离开的距离是由被吸引到带电电极的电解质离子尺寸决定的。该距离(<10 ?)和传统电容器薄膜材料所能实现的距离更小。 ◆ 这种庞大的表面积再加上非常小的电荷分离距离使得超级电容器较传统电容器而言有惊人大的静电容量,这也是其“超级”所在。

  二超级电容器有哪些优点和缺点?

  1、 优点

  ◆ 在很小的体积下达到法拉级的电容量;

  ◆ 无须特别的充电电路和控制放电电路

  ◆ 和电池相比过充、过放都不对其寿命构成负面影响;

  ◆ 从环保的角度考虑,它是一种绿色能源;

  ◆ 超级电容器可焊接,因而不存在象电池接触不牢固等问题;

  2、缺点

  ◆ 如果使用不当会造成电解质泄漏等现象;

  ◆ 和铝电解电容器相比,它内阻较大,因而不可以用于交流电路; 三、超级电容器都有哪些应用?

  ◆ 超级电容器的低阻抗对于当今许多高功率应用是必不可少的。对于快速充放电,超级电容器小的ESR意味着更大的功率输出。

电容器充电的问题.jpg

  ◆ 瞬时功率脉冲应用,重要存储、记忆系统的短时间功率支持。 四、应用举例 1、快速充电应用,几秒钟充电,几分钟放电。例如电动工具、电动玩具; 2、在UPS系统中,超级电容器提供瞬时功率输出,作为发动机或其它不间断系统的备用电源的补充; 3、应用于能量充足,功率匮乏的能源,如太阳能; 4、当公共汽车从一种动力源切换到另一动力源时的功率支持; 5、小电流,长时间持续放电,例如计算机存储器后备电源; 五、我可以多快给超级电容器放电?

  ◆ 超级电容器可以快速充放电,峰值电流仅受其内阻限制,甚至短路也不是致命的。

  ◆ 实际上决定于电容器单体大小,对于匹配负载,小单体可放10A,大单体可放1000A。

  ◆ 另一放电率的限制条件是热,反复地以剧烈的速率放电将使电容器温度升高,最终导致断路。

  六、我怎么样控制超级电容器的放电?

  ◆ 超级电容器的电阻阻碍其快速放电,超级电容器的时间常数τ在1~2s,完全给阻-容式电路放电大约需要5τ,也就是说如果短路放电大约需要5~10s。(由于电极的特殊结构它们实际上得花上数个小时才能将残留的电荷完全放干净) 七、超级电容器比电池更好?

  ◆ 超级电容器不同于电池,在某些应用领域,它可能优于电池。有时将两者结合起来,将电容器的功率特性和电池的高能量存储结合起来,不失为一种更好的途径。

  ◆ 超级电容器在其额定电压范围内可以被充电至任意电位,且可以完全放出。而电池则受自身化学反应限制工作在较窄的电压范围,如果过放可能造成永久性破坏。

  ◆ 超级电容器的荷电状态(SOC)与电压构成简单的函数,而电池的荷电状态则包括多样复杂的换算。

  ◆ 超级电容器与其体积相当的传统电容器相比可以存储更多的能量,电池与其体积相当的超级电容器相比可以存储更多的能量。在一些功率决定能量存储器件尺寸的应用中,超级电容器是一种更好的途径。

  ◆ 超级电容器可以反复传输能量脉冲而无任何不利影响,相反如果电池反复传输高功率脉冲其寿命大打折扣。

  ◆ 超级电容器可以快速充电而电池快速充电则会受到损害。

  ◆ 超级电容器可以反复循环数十万次,而电池寿命仅几百个循环。

  八、如何选择我所需的超级电容器?

  ◆ 首先,功率要求、放电时间及系统电压变化起决定作用。

  ◆ 超级电容器的输出电压降由两部分组成,一部分是超级电容器释放能量;另一部分是由于超级电容器内阻引起。两部分谁占主要取决于时间,在非常快的脉冲中,内阻部分占主要的,相反在长时间放电中,容性部分占主要。

  ◆ 以下基本参数决定您选择电容器的大小 1、 最高工作电压; 2、 工作截止电压; 3、 平均放电电流; 4、 放电时间多长



责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: 电容器

相关资讯