0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >基础知识 > 元器件选型指南

元器件选型指南

来源: 物控云
2022-06-08
类别:基础知识
eye 16
文章创建人 拍明芯城

原标题:元器件选型指南

  一、元器件选型基本原则:

  a)普遍性原则:所选的元器件要是被广泛使用验证过的,尽量少使用冷门、偏门芯片,减少开发风险。

  b)高性价比原则:在功能、性能、使用率都相近的情况下,尽量选择价格比较好的元器件,降低成本。

  c)采购方便原则:尽量选择容易买到、供货周期短的元器件。

  d)持续发展原则:尽量选择在可预见的时间内不会停产的元器件。

  e)可替代原则:尽量选择pin to pin兼容芯片品牌比较多的元器件。

  f)向上兼容原则:尽量选择以前老产品用过的元器件。

  g)资源节约原则:尽量用上元器件的全部功能和管脚。

  芯片的选型过程是对各个维度考量的折衷。

  二、全流程关注芯片属性

  1、我们在选型的时候,需要考虑试产的情况、同时需要考虑批量生产时的情况。

  小批量采购的价格、供货周期、样片申请;同时需要关注,大批量之后的价格和供货周期。有可能批量变大之后,供货的价格没有优势、或者批量大了之后,产能不足。

  另外,根据自己的实际采购情况,找对应的量级的供应商。例如,原厂往往不直接供货,需要通过代理商。有些代理商的供货量级都是有要求的。

  之前,有一个选型,选择了ST的STM32F427IGT6,原厂很给力帮忙申请样片。但是在采购的过程中碰到的困难,虽然我们希望整盘采购,但是由于其代理商出货量都有一定的要求,导致价格跟一开始通过原厂了解到的价格不一致。要高出很多。

  同时由于整个行业使用该芯片的场景不是很多,所以导致淘宝价格非常贵,根本没法接受。同时,有做芯片销售的朋友说是由于无人机厂家大量使用,导致有人在炒这颗芯片的价格,所以导致很难买到。

  2、关注器件本身的生命周期与产品生命周期的匹配

  对于通信设备一般要求我们选用的器件要有5年以上的生命周期,并且有后续完整的产品发展路标。

  我们的当时的一个新硬件平台,产品规划的时候是用于替代发货量在百万级单板数量的成熟平台。由于切换周期比较长。新产品在完成开发后1~2年之后,才逐步上量。其中一个DSP电路板,外设存储是SDRAM。正在产品准备铺量的时候,镁光等几大 内存芯片厂家,宣布停产。导致产品刚上量,就大量囤积库存芯片,并且寻找台湾的小厂进行器件替代。

  所以在器件选型的时候,充分体现了“人无远虑必有近忧”。

  3、除了考虑功能和实验室环境,还需要考虑整个生命周期的场景。

  三、具体选型,处理器选型

  要选好一款处理器,要考虑的因素很多,不单单是纯粹的硬件接口,还需要考虑相关的操作系统、配套的开发工具、仿真器,以及工程师微处理器的经验和软件支持情况等。

  嵌入式微处理器选型的考虑因素

  在产品开发中,作为核心芯片的微处理器,其自身的功能、性能、可靠性被寄予厚望,因为它的资源越丰富、自带功能越强大,产品开发周期就越短,项目成功率就越高。但是,任何一款微处理器都不可能尽善尽美,满足每个用户的需要,所以这就涉及选型的问题。

  (1)应用领域

  一个产品的功能、性能一旦定制下来,其所在的应用领域也随之确定。应用领域的确定将缩小选型的范围,例如:工业控制领域产品的工作条件通常比较苛刻,因此对芯片的工作温度通常是宽温的,这样就得选择工业级的芯片,民用级的就被排除在外。目前,比较常见的应用领域分类有航天航空、通信、计算机、工业控制、医疗系统、消费电子、汽车电子等。

  (2)自带资源

  经常会看到或听到这样的问题:主频是多少?有无内置的以太网MAC?有多少个I/O口?自带哪些接口?支持在线仿真吗?是否支持OS,能支持哪些OS?是否有外部存储接口?……以上都涉及芯片资源的问题,微处理器自带什么样的资源是选型的一个重要考虑因素。芯片自带资源越接近产品的需求,产品开发相对就越简单。

  (3)可扩展资源

  硬件平台要支持OS、RAM和ROM,对资源的要求就比较高。芯片一般都有内置RAM和ROM,但其容量一般都很小,内置512KB就算很大了,但是运行OS一般都是兆级以上。这就要求芯片可扩展存储器。

  (4)功 耗

  单看“功耗”是一个较为抽象的名词。低功耗的产品即节能又节财,甚至可以减少环境污染,还能增加可靠性,它有如此多的优点,因此低功耗也成了芯片选型时的一个重要指标。

  (5)封 装

  常见的微处理器芯片封装主要有QFP、BGA两大类型。BGA类型的封装焊接比较麻烦,一般的小公司都不会焊,但BGA封装的芯片体积会小很多。如果产品对芯片体积要求不严格,选型时最好选择QFP封装。

  (6)芯片的可延续性及技术的可继承性

  目前,产品更新换代的速度很快,所以在选型时要考虑芯片的可升级性。如果是同一厂家同一内核系列的芯片,其技术可继承性就较好。应该考虑知名半导体公司,然后查询其相关产品,再作出判断。

  (7)价格及供货保证

  芯片的价格和供货也是必须考虑的因素。许多芯片目前处于试用阶段(sampling),其价格和供货就会处于不稳定状态,所以选型时尽量选择有量产的芯片。

  (8)仿真器

  仿真器是硬件和底层软件调试时要用到的工具,开发初期如果没有它基本上会寸步难行。选择配套适合的仿真器,将会给开发带来许多便利。对于已经有仿真器的人们,在选型过程中要考虑它是否支持所选的芯片。

  (9)OS及开发工具

  作为产品开发,在选型芯片时必须考虑其对软件的支持情况,如支持什么样的OS等。对于已有OS的人们,在选型过程中要考虑所选的芯片是否支持该OS,也可以反过来说,即这种OS是否支持该芯片。

  (10)技术支持

  现在的趋势是买服务,也就是买技术支持。一个好的公司的技术支持能力相对比较有保证,所以选芯片时最好选择知名的半导体公司。

  另外,芯片的成熟度取决于用户的使用规模及使用情况。选择市面上使用较广的芯片,将会有比较多的共享资源,给开发带来许多便利。

  这里再说一点,有些厂家善于做MCU的简单应用,有的厂家善于做工控或者更复杂的MCU和CPU的应用,所以会各有优劣。

  CPU按指令集架构体系分主流的有PowerPC、X86、MIPS、ARM四种,X86采用CISC指令集,POWERPC、MIPS、ARM采用RISC指令集,RISC的CPU多应用于嵌入式。

  封装名称与图形如下

  No.1晶体管

  

图片


  

图片


  

图片


  

图片


  

图片


  No.2,晶振

  

图片


  No.3,电感

  

图片


  No.4,接插件

  

图片


  

图片


  

图片


  

图片


  

图片


  No.5,Discrete Components

  

图片


  

图片


  

图片


  

图片


  

图片


  No.6,晶体管

  

图片


  

图片


  No.7,可变电容

  

图片


  No.8,数码管

  

图片


  

图片


  No.9,可调电阻

  

图片


  No.10,电阻

  

图片


  No.11,排阻

  

图片


  No.12,继电器

  

图片


  

图片


  No.13,开关

  

图片


  No.14,跳线

  

图片


  No.15,集成电路

  

图片


  No.16,1.5mmBGA

  

图片


  

图片


  No.17,1mmBGA

  

图片


  

图片


  No.18,1.27BGA

  

图片


  

图片


  

图片


  

图片


  

图片


  

图片


  

图片


  

图片


  九大类元器件选型注意事项:

  1.电容

  慎用1206及以上封装的贴片电容等器件,焊接过程中有实效风险 陶瓷电容选用NPO(C0G)和X7R这两类,温度系数控制较好。钽电解电容不要使用额定电压超过25V产品。铝电解电容一般选取日系产品,形成电压一般是额定电压的1.2〜1.4倍。

  一般情况下,各种电容ESR比较:铝电容>钽电容>陶瓷电容;关注高温下时的纹波电流不要超出使用规格,否则会影响使用寿命;每种封装的极限值不建议使用,一般要降一格使用;原厂只有中文手册的不建议使用,一般都是各种封装的极限临界值。

  2.电阻

  ① 慎用1206及以上封装的贴片电容等器件,焊接过程中有实效风险;

  ② 一般电阻选精度1%厚膜金属膜电阻,精度电阻选0.5%以上薄膜金属膜电阻。

  ③ 排阻一般不建议选用,排阻的封装使其失效风险大于单个贴片电阻

  ④ 贴片0欧姆,其阻值不是绝对为零,最大阻值可为50毫欧。a) 0402 ~ 0603 :额定电流0.5A,超过70度时降额为0.3A; b) 0805 ~ 1206 :额定电流1A,超过70度时降额0.6A; c) 1206及以上:额定电流2A,超过70度时降额1.2A 贴片电阻能承受的脉冲电压限制 0402 ~ 0603 :100V 0805 :300V 1206及以上:400V。

  ⑤贴片电阻能承受的脉冲电压限制:a) 0402~0603:100V; b) 0805:300V; c) 1206及以上:400V。

  3.二三极管

  二三极管选型时注意以下参数在电路中是否够用,防止损坏风险。

  反向击穿电压Vbr,反向重复工作电压Vrwm,最大平均正向平均电流If,正向压降Vf,反向恢复时间Trr,热阻Rjc,最高节温Tjm。

  4.磁珠

  磁珠选型时要注意冲击电流问题。常用0805和0603封装磁珠承受冲击电流建议。

  多脉冲且微秒级 :10 ~ 40 倍额定电流;单脉冲 5~20uS,30~500倍额定值,如果是多脉冲降额到 30% 使用;1A 通流能力磁珠可至少承受 40A 电流 20 次 脉冲电流冲击;从可靠性角度来看如果冲击电流大于 25A 以上的应用场合 ,均需评估和分析考虑可靠性问题。

  5.连接器

  对于有弹性要求连接器(如网口)接插件材料一 般选用铍青铜(CuBe),镀层为金(Au);连接器接插件 材料一般选用黄铜或锡青铜 ,镀层一般选镀锡 Tin(Sn) 或镀金(Au);对频繁插拔和有电流要求的连接器,镀 层选镀金(Au)的;在震动频繁的场合不建议用镀 锡Tin(Sn)的连接器超大电流的情况下可以选择镀 银(Ag)的连接器。

  6.晶体和晶振

  尽量选用贴片封装,行业内目前出货量最大的是3.2mmx2.5mm(3225) 封装;选择AT切基频,优选范围12MHz~15MHz;一个晶振一般只驱动一个器件。

  7.芯片

  在一个项目之中最为重要的莫过于 MCU芯片,芯片的选择要点:

  慎选144脚及以上的QFP封装芯片,焊接时失效风险很大;不同电平电路混用时转换器件选择要遵从数据手册上输入输出电平的门限定义,必要时加入限流电阻;不用的输入管脚不能悬空,接高还是接地要根据数据手册确定,数据手册没有明确说明的,先用0欧电阻做选择处理接高还是接地,等实测信号后再确认。芯片输出管脚的驱动能力要参考数据手册,要有足够的预留,不超过额定的60%。

  8.瞬时保护器件

  瞬态保护器件(TVS 和 TSS)在选型时要考虑结电容对信号的影响。

  9.其他器件

  电感选型时要根据用途(电源使用、射频或高频电路),选择不同封装的产品;

  拨码开关应尽量避免使用 ,焊接时失效风险很大 ;

  电位器应尽量避免使用,焊接时失效风险很大;

  光耦一般不用于高速信号(>1MHz)和模拟信号隔离;

  保险丝选型时要考虑 IEC 标准和 UL 标准的区别等等。

  元器件常见故障分析:

  接下来就说说元器件常见故障的知识点,以及在实验过程当中到底哪些方面的原因容易导致元器件失效,失效的机理到底是什么。

  

图片


  在实际的过程之中如果比如电阻,电容等元器件如果失效了以后,应该从哪方面的因素去考虑,看下面所梳理的细节内容。

  

图片


  在问题出现的时候,需要关注的是如何如何排除与解决此问题,所以在这边是否拥有一整套的排查过程呢,下面的这个整理就能告诉在实际出现问题的执行顺序。当然在这边会牵涉到的是如果芯片MCU有故障的话,排查的顺序按照图片所描述的,需要的是着重去验证可靠性验证,追根溯源到到底是哪个PIN出现问题,其次找出到底是什么导致出现问题加以改善。

  

图片


  总结:

  成品的样件,可靠性最终追究的是元器件的可靠性,所以对于硬件工程师来说,在立项与参数技术的过程当中都会考虑在做项目过程元器件的功能等级这块的要求,然而对于一些MCU与集成芯片来说,国内外的产品是存在着差距的,不管是安全性亦或者是功能的方面,而后面关于元器件失效故障方面其实是可以选型以及上篇文章所讲述的DFMEA阶段可以避免,所以说如果前期方面考虑到一些因素,后面是可以避免的。

  

图片


  电容器,简称电容(Capacitor,通常用字母“C” 表示)是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,旁路,滤波,调谐回路,能量转换,控制等方面。

  一、基础知识

  1.电容器的分类

  电容器的种类繁多,其分类方式有多种:

  

图片


  2.电容器的型号命名方法

  电容器的型号一般由四部分组成(不适用于压敏、可变和真空电容器):

  第一部分(主称):用字母表示,电容器用C

  第二部分(材料):用字母表示

  第三部分(特征):一般用数字表示,个别用字母表示

  第四部分(序号):用数字表示

  

图片


  

图片


  3.主要性能指标

  (1)标称电容量

  电容器上标有的电容数是电容器的标称容量。电容的基本单位是法拉,简称法(F)。但实际上,法拉是一个很不常用的单位,因为电容器的容量往往比1法拉小得多,常用的电容单位有微法(μF)、纳法(nF)和皮法(pF)。

  它们的关系是:1F=1000mF;1mF=1000μF;1μF=1000nF;1nF=1000pF

  一般情况,电容器上都直接写出其容量,也有用数字来标志容量的。通常在容量小于10000pF 的时候,用pF做单位,大于10000pF 的时候,用uF 做单位。为了简便起见,大于 100pF 而小于 1uF 的电容常常不注单位。没有小数点的,它的单位是 pF,有小数点的,它的单位是 uF。如有的电容上标有“332”(3300pF)三位有效数字,左起两位给出电容量的第一、二位数字,而第三位数字则表示在后加 0 的个数,单位是 pF。

  

图片


  (2)允许误差

  电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围内称精度。

  

图片


  (3)额定电压

  在规定的工作温度范围内,电容器长期可靠地工作,它能承受的最高直流电压有效值,就是电容器的耐压,也叫做电容器的直流工作电压,一般直接标注在电容器外壳上。如果在交流电路中,要注意所加的交流电压最高不能超过电容器的直流工作电压值。

  常用的固定电容工作电压有 :6.3V、10V、16V、25V、35V 、50V、63V、100V、2500V、400V、500V、630V

  (4)绝缘电阻

  直流电压加在电容上,并产生漏电电流,两者之比称为绝缘电阻。绝缘电阻越小,漏电越严重。电容器漏电会引起能量损耗,这种损耗不仅影响电容器的寿命,而且会影响电路的工作。

  (5)耗损

  电容器在电场作用下,在单位时间内,因发热所消耗的能量叫做耗损。电容器的耗损主要由介质耗损、电导耗损和电容所有金属部分的电阻所引起的。在直流电场的作用下,电容的耗损以漏导耗损形式存在,一般较小;在交变电场的作用下,电容的耗损不仅与漏导有关,而且与周期的极化建立过程有关。

  (6)寿命

  影响电容器寿命的原因有很多,比如过电压、逆电压、高温、急速放电等等,正常使用情况下,最大的影响因素是温度。电容器的使用寿命随温度的增加而减小,主要原因是温度加速化学反应而使介质随时间退化。电容器的工作温度每增加10℃寿命就会减半。

  4.电容器的作用

  电容器的基本作用就是充电与放电,但由基本作用所延伸出来的许多电路现象,使得电容器有着不同的用途:

  

图片


  二、电容器的选型及运用

  1.一般特性参数选型要求

  (1)型号

  一般在电路中用于低频耦合、旁路去耦等,性能要求不严格时可以采用纸介电容器、电解电容器。低频放大器的耦合电容器,选用1-22μF的电解电容器;

  旁路电容根据电路工作率来选,如在低频电路中,发射极旁路电容选用电解电容器,容量在10-220μF之间;

  在中频电路中可选用0.01-0.1μF的纸介、金属化纸介、有机薄膜电容器等;

  在高频电路中,则应选用云母电容器和瓷介电容器。在电源滤波和退耦电路中,可选用电解电容器。

  

图片


  (2)精度

  在旁路、退耦、低频耦合电路中,一般对电容器的精度没有很严格要求,选用时可根据设计值,选用相近容量或容量略大些的电容器。

  但在另一些电路中,如振荡回路、延时回路、音调控制电路中,电容器的容量就应尽可能和计算值一致。

  在各种滤波器和各种网络中,对电容量的精度有更高要求,应选用高精度的电容器来满足电路的要求。

  (3)额定工作电压

  电容器的额定工作电压应高于实际工作电压,并留有足够余量,以防因电压波动而导致损坏。一般而言,应使工作电压低于电容器的额定工作电压的10%-20%。

  在某些电路中,电压波动幅度较大,可留有更大的余量。

  有极性的电容器不能用于交流电路。

  电解电容器的耐温性能很差,如果工作电压超过允许值,介质损耗将增大,很容易导致温升过高,最终导致损坏。

  一般说来,电容器工作时只允许出现较低温升,否则属于不正常现象。因此,在设备安装时,应尽量远离发热元件(如大功率管、变压器等)。如果工作环境温度较高,则应降低工作电压使用。

  一般小容量的电容器介质损耗很小,耐温性能和稳定性都比较好,但电路对它们的要求往往也比较高,因此选择额定工作电压时仍应留有一定的余量,也要注意环境工作温度的影响。

  (4)绝缘电阻

  绝缘电阻越小的电容器,其漏电流就越大,漏电流不仅损耗了电路中的电能,重要的是它会导致电路工作失常或降低电路的性能。漏电流产生的功率损耗,会使电容器发热,而其温度升高,又会产生更大的漏电流,如此循环,极易损坏电容器。因此在选用电容器时,应选择绝缘电阻足够高的电容器,特别是高温和高压条件下使用的电容器。

  作为电桥电路中的桥臂、运算元件等场合,绝缘电阻的高低将影响测量、运算等的精度,必须采用高绝缘电阻值的电容器。

  电容器的损耗在许多场合也直接影响到电路的性能,在滤波器,中频回路、振荡回路等电路中,要求损耗尽可能小,这样可以提高回路的品质因数,改善电路的性能。

  (5)温度系数

  电容器的温度系数越大,其容量随温度的变化越大,使得电路产生漂移,造成电路工作的不稳定。这在很多电路中是不允许的,例如振荡电路中的振荡回路元件、滤波器等,这些场合应选用温度系数小的电容器,以确保其能稳定工作。

  (6)频率特性

  在高频应用时,由于电容器自身电感、引线电感和高频损耗的影响,电容器的性能会变差。频率特性差的电容器不仅不能发挥其应有的作用,而且还会带来许多麻烦。例如,纸介电容器的分布电感会使高频放大器产生超高频寄生反馈,使电路不能工作。所以选用高频电路的电容器时,一要注意电容器的频率参数,二要注意电容器的引线不能留得过长,以减小引线电感对电路的不良因影响。

  (7)降额

  降额使用可以提高可靠性,处于最差工况工作的元件,是实际寿命达不到额定寿命的重要因素。电容降额标准如下:

  

图片


  (8)使用环境

  使用环境的好坏,直接影响电容器的性能和寿命。在工作温度较高的环境中,电容器容易产生漏电并加速老化。因此在设计和安装时,因尽可能使用温度系数小的电容器,并远离热源和改善机内通风散热,必要时,应强迫风冷。在寒冷条件下,由于气温很低,普通电解电容器会因电解液结冰而失效,使设备工作失常,因此必须使用耐寒的电解电容器。

  

图片


  

图片


  

图片


  

图片


  1.BGA(ball grid array)

  球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用 以 代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也 称为凸 点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。

  封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不 用担心QFP 那样的引脚变形问题。该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。

  最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在 也有 一些LSI 厂家正在开发500 引脚的BGA。BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为 , 由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为 GPAC(见OMPAC 和GPAC)。

  

图片


  2.BQFP(quad flat package with bumper)

  带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以 防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中 采用 此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。

  

图片


  3.碰焊PGA(butt joint pin grid array)

  表面贴装型PGA 的别称(见表面贴装型PGA)。

  

图片


  4.C-(ceramic)

  表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。

  5.Cerdip

  用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有 玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中 心 距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。

  6.Cerquad

  表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗 口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~ 2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、 0.5mm、 0.4mm 等多种规格。引脚数从32 到368。

  7.CLCC(ceramic leaded chip carrier)

  带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形 。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为 QFJ、QFJ-G(见QFJ)。

  

图片


  8.COB(chip on board)

  板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与 基 板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用 树脂覆 盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和 倒片 焊技术。

  9.DFP(dual flat package)

  双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。

  10.DIC(dual in-line ceramic package)

  陶瓷DIP(含玻璃密封)的别称(见DIP).

  11.DIL(dual in-line)

  DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。

  12.DIP(dual in-line package)

  双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种 。DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。

  引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm 和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加 区分, 只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为cerdip(见cerdip)。

  

图片


  13.DSO(dual small out-lint)

  双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。

  14.DICP(dual tape carrier package)

  双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于 利 用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为 定制品。另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机 械工 业)会标准规定,将DICP 命名为DTP。

  15.DIP(dual tape carrier package)

  同上。日本电子机械工业会标准对DTCP 的命名(见DTCP)。

  16.FP(flat package)

  扁平封装。表面贴装型封装之一。QFP 或SOP(见QFP 和SOP)的别称。部分半导体厂家采 用此名称。

  17.flip-chip

  倒焊芯片。裸芯片封装技术之一,在LSI 芯片的电极区制作好金属凸点,然后把金属凸 点 与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有 封装技 术中体积最小、最薄的一种。但如果基板的热膨胀系数与LSI 芯片不同,就会在接合处产生反应,从而影响连接的可 靠 性。因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料。

  18.FQFP(fine pitch quad flat package)

  小引脚中心距QFP。通常指引脚中心距小于0.65mm 的QFP(见QFP)。部分导导体厂家采 用此名称。

  19.CPAC(globe top pad array carrier)

  美国Motorola 公司对BGA 的别称(见BGA)。

  20.CQFP(quad fiat package with guard ring)

  带保护环的四侧引脚扁平封装。塑料QFP 之一,引脚用树脂保护环掩蔽,以防止弯曲变 形。在把LSI 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L 形状)。这种封装 在美国Motorola 公司已批量生产。引脚中心距0.5mm,引脚数最多为208 左右。

  21.H-(with heat sink)

  表示带散热器的标记。例如,HSOP 表示带散热器的SOP。

  

图片


  22.pin grid array(surface mount type)

  表面贴装型PGA。通常PGA 为插装型封装,引脚长约3.4mm。表面贴装型PGA 在封装的 底面有陈列状的引脚,其长度从1.5mm 到2.0mm。贴装采用与印刷基板碰焊的方法,因而 也称 为碰焊PGA。

  因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得 不 怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI 用的封装。封装的基材有 多层陶 瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。

  23.JLCC(J-leaded chip carrier)

  J 形引脚芯片载体。指带窗口CLCC 和带窗口的陶瓷QFJ 的别称(见CLCC 和QFJ)。部分半 导体厂家采用的名称。

  

图片


  24.LCC(Leadless chip carrier)

  无引脚芯片载体。指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是 高 速和高频IC 用封装,也称为陶瓷QFN 或QFN-C(见QFN)。

  

图片


  25.LGA(land grid array)

  触点陈列封装。即在底面制作有阵列状态坦电极触点的封装。装配时插入插座即可。现 已 实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm 中心距)的陶瓷LGA,应用于高速 逻辑 LSI 电路。

  LGA 与QFP 相比,能够以比较小的封装容纳更多的输入输出引脚。另外,由于引线的阻 抗 小,对于高速LSI 是很适用的。但由于插座制作复杂,成本高,现在基本上不怎么使用 。预计 今后对其需求会有所增加。

  26.LOC(lead on chip)

  芯片上引线封装。LSI 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片 的 中心附近制作有凸焊点,用引线缝合进行电气连接。与原来把引线框架布置在芯片侧面 附近的 结构相比,在相同大小的封装中容纳的芯片达1mm 左右宽度。

  27.LQFP(low profile quad flat package)

  薄型QFP。指封装本体厚度为1.4mm 的QFP,是日本电子机械工业会根据制定的新QFP 外形规格所用的名称。

  

图片


  28.L-QUAD

  陶瓷QFP 之一。封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性。封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。是为逻辑LSI 开发的一种 封装, 在自然空冷条件下可容许W3的功率。现已开发出了208 引脚(0.5mm 中心距)和160 引脚 (0.65mm 中心距)的LSI 逻辑用封装,并于1993 年10 月开始投入批量生产。

  29.MCM(multi-chip module)

  多芯片组件。将多块半导体裸芯片组装在一块布线基板上的一种封装。根据基板材料可 分 为MCM-L,MCM-C 和MCM-D 三大类。MCM-L 是使用通常的玻璃环氧树脂多层印刷基板的组件。布线密度不怎么高,成本较低 。MCM-C 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使 用多层陶瓷基板的厚膜混合IC 类似。两者无明显差别。布线密度高于MCM-L。MCM-D 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al 作为基板的组 件。布线密谋在三种组件中是最高的,但成本也高。

  30.MFP(mini flat package)

  小形扁平封装。塑料SOP 或SSOP 的别称(见SOP 和SSOP)。部分半导体厂家采用的名称。

  31.MQFP(metric quad flat package)

  按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类。指引脚中心距为 0.65mm、本体厚度为3.8mm~2.0mm 的标准QFP(见QFP)。

  32.MQUAD(metal quad)

  美国Olin 公司开发的一种QFP 封装。基板与封盖均采用铝材,用粘合剂密封。在自然空 冷 条件下可容许2.5W~2.8W 的功率。日本新光电气工业公司于1993 年获得特许开始生产 。

  33.MSP(mini square package)

  QFI 的别称(见QFI),在开发初期多称为MSP。QFI 是日本电子机械工业会规定的名称。

  34.OPMAC(over molded pad array carrier)

  模压树脂密封凸点陈列载体。美国Motorola 公司对模压树脂密封BGA 采用的名称(见 BGA)。

  35.P-(plastic)

  表示塑料封装的记号。如PDIP 表示塑料DIP。

  36.PAC(pad array carrier)

  凸点陈列载体,BGA 的别称(见BGA)。

  37.PCLP(printed circuit board leadless package)

  印刷电路板无引线封装。日本富士通公司对塑料QFN(塑料LCC)采用的名称(见QFN)。引脚中心距有0.55mm 和0.4mm 两种规格。目前正处于开发阶段。

  38.PFPF(plastic flat package)

  塑料扁平封装。塑料QFP 的别称(见QFP)。部分LSI 厂家采用的名称。

  39.PGA(pin grid array)

  陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都 采 用多层陶瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模 逻辑 LSI 电路。成本较高。引脚中心距通常为2.54mm,引脚数从64 到447 左右。了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256 引脚的塑料PG A。另外,还有一种引脚中心距为1.27mm 的短引脚表面贴装型PGA(碰焊PGA)。(见表面贴装 型PGA)。

  40.piggy back

  驮载封装。指配有插座的陶瓷封装,形关与DIP、QFP、QFN 相似。在开发带有微机的设 备时用于评价程序确认操作。例如,将EPROM 插入插座进行调试。这种封装基本上都是 定制 品,市场上不怎么流通。

  41.PLCC(plastic leaded chip carrier)

  带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形 , 是塑料制品。美国德克萨斯仪器公司首先在64k 位DRAM 和256kDRAM 中采用,现在已经 普 及用于逻辑LSI、DLD(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18 到84。J 形引脚不易变形,比QFP 容易操作,但焊接后的外观检查较为困难。

  PLCC 与LCC(也称QFN)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现 在已经出现用陶瓷制作的J 形引脚封装和用塑料制作的无引脚封装(标记为塑料LCC、PC LP、P -LCC 等),已经无法分辨。为此,日本电子机械工业会于1988 年决定,把从四侧引出 J 形引 脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ 和QFN)。

  42.P-LCC(plastic teadless chip carrier)(plastic leaded chip currier)

  有时候是塑料QFJ 的别称,有时候是QFN(塑料LCC)的别称(见QFJ 和QFN)。部分LSI 厂家用PLCC 表示带引线封装,用P-LCC 表示无引线封装,以示区别。

  43.QFH(quad flat high package)

  四侧引脚厚体扁平封装。塑料QFP 的一种,为了防止封装本体断裂,QFP 本体制作得 较厚(见QFP)。部分半导体厂家采用的名称。

  44.QFI(quad flat I-leaded packgac)

  四侧I 形引脚扁平封装。表面贴装型封装之一。引脚从封装四个侧面引出,向下呈I 字 。也称为MSP(见MSP)。贴装与印刷基板进行碰焊连接。由于引脚无突出部分,贴装占有面 积小 于QFP。日立制作所为视频模拟IC 开发并使用了这种封装。此外,日本的Motorola 公司的PLL IC 也采用了此种封装。引脚中心距1.27mm,引脚数从18 于68。

  45.QFJ(quad flat J-leaded package)

  四侧J 形引脚扁平封装。表面贴装封装之一。引脚从封装四个侧面引出,向下呈J 字形 。是日本电子机械工业会规定的名称。引脚中心距1.27mm。

  材料有塑料和陶瓷两种。塑料QFJ 多数情况称为PLCC(见PLCC),用于微机、门陈列、 DRAM、ASSP、OTP 等电路。引脚数从18 至84。

  陶瓷QFJ 也称为CLCC、JLCC(见CLCC)。带窗口的封装用于紫外线擦除型EPROM 以及 带有EPROM 的微机芯片电路。引脚数从32 至84。

  46.QFN(quad flat non-leaded package)

  四侧无引脚扁平封装。表面贴装型封装之一。现在多称为LCC。QFN 是日本电子机械工业 会规定的名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度 比QFP 低。

  但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电 极触点 难于作到QFP 的引脚那样多,一般从14 到100 左右。材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN。电极触点中心距1.27mm。

  塑料QFN 是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm 外, 还有0.65mm 和0.5mm 两种。这种封装也称为塑料LCC、PCLC、P-LCC 等。

  47.QFP(quad flat package)

  四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。基材有 陶 瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时, 多数情 况为塑料QFP。塑料QFP 是最普及的多引脚LSI 封装。不仅用于微处理器,门陈列等数字 逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路。引脚中心距 有1.0mm、0.8mm、 0.65mm、0.5mm、0.4mm、0.3mm 等多种规格。0.65mm 中心距规格中最多引脚数为304。

  日本将引脚中心距小于0.65mm 的QFP 称为QFP(FP)。但现在日本电子机械工业会对QFP 的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为 QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三种。

  另外,有的LSI 厂家把引脚中心距为0.5mm 的QFP 专门称为收缩型QFP 或SQFP、VQFP。但有的厂家把引脚中心距为0.65mm 及0.4mm 的QFP 也称为SQFP,至使名称稍有一些混乱 。QFP 的缺点是,当引脚中心距小于0.65mm 时,引脚容易弯曲。

  为了防止引脚变形,现已 出现了几种改进的QFP 品种。如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂 保护 环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专 用夹 具里就可进行测试的TPQFP(见TPQFP)。

  在逻辑LSI 方面,不少开发品和高可靠品都封装在多层陶瓷QFP 里。引脚中心距最小为 0.4mm、引脚数最多为348 的产品也已问世。此外,也有用玻璃密封的陶瓷QFP(见Gerqa d)。

  48.QFP(FP)(QFP fine pitch)

  小中心距QFP。日本电子机械工业会标准所规定的名称。指引脚中心距为0.55mm、0.4mm 、 0.3mm 等小于0.65mm 的QFP(见QFP)。

  49.QIC(quad in-line ceramic package)

  陶瓷QFP 的别称。部分半导体厂家采用的名称(见QFP、Cerquad)。

  50.QIP(quad in-line plastic package)

  塑料QFP 的别称。部分半导体厂家采用的名称(见QFP)。

  51.QTCP(quad tape carrier package)

  四侧引脚带载封装。TCP 封装之一,在绝缘带上形成引脚并从封装四个侧面引出。是利 用 TAB 技术的薄型封装(见TAB、TCP)。

  52.QTP(quad tape carrier package)

  四侧引脚带载封装。日本电子机械工业会于1993 年4 月对QTCP 所制定的外形规格所用 的 名称(见TCP)。

  53.QUIL(quad in-line)

  QUIP 的别称(见QUIP)。

  54.QUIP(quad in-line package)

  四列引脚直插式封装。引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列。引脚 中 心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm。因此可用于标准印刷线路板 。是 比标准DIP 更小的一种封装。日本电气公司在台式计算机和家电产品等的微机芯片中采 用了些 种封装。材料有陶瓷和塑料两种。引脚数64。

  55.SDIP (shrink dual in-line package)

  收缩型DIP。插装型封装之一,形状与DIP 相同,但引脚中心距(1.778mm)小于DIP(2.54 mm),

  因而得此称呼。引脚数从14 到90。也有称为SH-DIP 的。材料有陶瓷和塑料两种。

  56.SH-DIP(shrink dual in-line package)

  同SDIP。部分半导体厂家采用的名称。

  57.SIL(single in-line)

  SIP 的别称(见SIP)。欧洲半导体厂家多采用SIL 这个名称。

  58.SIMM(single in-line memory module)

  单列存贮器组件。只在印刷基板的一个侧面附近配有电极的存贮器组件。通常指插入插 座 的组件。标准SIMM 有中心距为2.54mm 的30 电极和中心距为1.27mm 的72 电极两种规格 。在印刷基板的单面或双面装有用SOJ 封装的1 兆位及4 兆位DRAM 的SIMM 已经在个人 计算机、工作站等设备中获得广泛应用。至少有30~40%的DRAM 都装配在SIMM 里。

  59.SIP(single in-line package)

  单列直插式封装。引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时 封 装呈侧立状。引脚中心距通常为2.54mm,引脚数从2 至23,多数为定制产品。封装的形 状各 异。也有的把形状与ZIP 相同的封装称为SIP。

  

图片


  60.SK-DIP(skinny dual in-line package)

  DIP 的一种。指宽度为7.62mm、引脚中心距为2.54mm 的窄体DIP。通常统称为DIP(见 DIP)。

  61.SL-DIP(slim dual in-line package)

  DIP 的一种。指宽度为10.16mm,引脚中心距为2.54mm 的窄体DIP。通常统称为DIP。

  62.SMD(surface mount devices)

  表面贴装器件。偶而,有的半导体厂家把SOP 归为SMD(见SOP)。

  63.SO(small out-line)

  SOP 的别称。世界上很多半导体厂家都采用此别称。(见SOP)。

  

图片


  64.SOI(small out-line I-leaded package)

  I 形引脚小外型封装。表面贴装型封装之一。引脚从封装双侧引出向下呈I 字形,中心 距 1.27mm。贴装占有面积小于SOP。日立公司在模拟IC(电机驱动用IC)中采用了此封装。引 脚数 26。

  65.SOIC(small out-line integrated circuit)

  SOP 的别称(见SOP)。国外有许多半导体厂家采用此名称。

  66.SOJ(Small Out-Line J-Leaded Package)

  J 形引脚小外型封装。表面贴装型封装之一。引脚从封装两侧引出向下呈J 字形,故此 得名。通常为塑料制品,多数用于DRAM 和SRAM 等存储器LSI 电路,但绝大部分是DRAM。用SO J 封装的DRAM 器件很多都装配在SIMM 上。引脚中心距1.27mm,引脚数从20 至40(见SIMM )。

  

图片


  67.SQL(Small Out-Line L-leaded package)

  按照JEDEC(美国联合电子设备工程委员会)标准对SOP 所采用的名称(见SOP)。

  68.SONF(Small Out-Line Non-Fin)

  无散热片的SOP。与通常的SOP 相同。为了在功率IC 封装中表示无散热片的区别,有意 增添了NF(non-fin)标记。部分半导体厂家采用的名称(见SOP)。

  69.SOF(small Out-Line package)

  小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有 塑料 和陶瓷两种。另外也叫SOL 和DFP。

  SOP 除了用于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不 超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8 ~44。

  另外,引脚中心距小于1.27mm 的SOP 也称为SSOP;装配高度不到1.27mm 的SOP 也称为 TSOP(见SSOP、TSOP)。还有一种带有散热片的SOP。

  电气元件选型及计算

  1、已知三相电动机容量,求其额定电流

  口诀(c):容量除以千伏数,商乘系数点七六。

  三相二百二电机,千瓦三点五安培。

  常用三百八电机,一个千瓦两安培。

  低压六百六电机,千瓦一点二安培。

  高压三千伏电机,四个千瓦一安培。

  高压六千伏电机,八个千瓦一安培。

  容量大一点的减一点.小一点的加一点

  精确计算电流I=P/U×√3×cosφ(A)

  补充:准确的说,还应乘上电机效率.一般为0.9

  我们常见的三相电机额定电压(U)是380v.功率因数(COSφ)一般是0.85,电机铭牌上会有标注

  10KW的三相电机额定电流的具体算法:I=10000÷(380×1.73×0.85×0.9)≈19.8A

  2、测知电力变压器二次侧电流,求算其所载负荷容量

  口诀:

  已知配变二次压,测得电流求千瓦。

  电压等级四百伏,一安零点六千瓦。

  电压等级三千伏,一安四点五千瓦。

  电压等级六千伏,一安整数九千瓦。

  电压等级十千伏,一安一十五千瓦。

  电压等级三万五,一安五十五千瓦。

  3、测知白炽灯照明线路电流,求算其负荷容量

  照明电压二百二,一安二百二十瓦。

  不论供电还是配电线路

  ,只要用钳型电流表测得某相线电流值,然后乘以220系数,积数就是该相线所载负

  荷容量。测电流求容量数,可帮助电工迅速调整照明干线三相负荷容量不平衡问题,

  可帮助电工分析配电箱内保护熔体经常熔断的原因,配电导线发热的原因等等。

  4、测知无铭牌380V单相焊接变压器的空载电流,求算基额定容量

  口诀:

  三百八焊机容量,空载电流乘以五。

  变压器的空载电流一般约为额定电流的6%~8%(国家规定空载电流不应大于额定电流的10%)。这就是口诀和公式的理论依据。

  5、已知380V三相电动机容量,求其过载保护热继电器元件额定电流和整定电流

  口诀:

  电机过载的保护,热继电器热元件;

  号流容量两倍半,两倍千瓦数整定。

  热元件整定电流按“两倍千瓦数整定”;热元件额定电流按“号流容量两倍半”算选;热继电器的型号规格,即其额定电流值应大于等于热元件额定电流值。

  6、已知380V三相电动机容量,求其远控交流接触器额定电流等级

  口诀:

  远控电机接触器,两倍容量靠等级;

  步繁起动正反转,靠级基础升一级。

  7、已知小型380V三相笼型电动机容量,求其供电设备最小容量、负荷开关、保护熔体电流值

  口诀:

  直接起动电动机,容量不超十千瓦;

  六倍千瓦选开关,五倍千瓦配熔体。

  供电设备千伏安,需大三倍千瓦数。

  说明:

  (1)口诀所述的直接起动的电动机,是小型380V鼠笼型三相电动机,电动机起动电流很大,一般是额定电流的4~7倍。用负荷开关直接起动的电动机容量最大不应超过10kW,一般以4.5kW以下为宜,且开启式负荷开关(胶盖瓷底隔离开关)一般用于5.5kW及以下的小容量电动机作不频繁的直接起动;封闭式负荷开关(铁壳开关)一般用于10kW以下的电动机作不频繁的直接起动。两者均需有熔体作短路保护,还有电动机功率不大于供电变压器容量的30%。总之,切记电动机用负荷开关直接起动是有条件的!

  8、电机起动星三角,起动时间好整定;

  容量开方乘以二,积数加四单位秒。

  电机起动星三角,过载保护热元件;

  整定电流相电流,容量乘八除以七。

  时间继电器调整时,暂不接入电动机进行操作,试验时间继电器的动作时间是否能与所控制的电动机的起动时间一致。如果不一致,就应再微调时间继电器的动作时间,再进行试验。但两次试验的间隔至少要在90s以上,以保证双金属时间继电器自动复位。

  9、已知笼型电动机容量,求算控制其的断路器脱扣器整定电流

  口诀:

  断路器的脱扣器,整定电流容量倍;

  瞬时一般是二十,较小电机二十四;

  延时脱扣三倍半,热脱扣器整两倍。

  断路器的脱扣器整定电流值计算是电工常遇到的问题,口诀给出了整定电流值和所控制的笼型电动机容量千瓦数之间的倍数关系。

  2)“延时脱扣三倍半,热脱扣器整两倍”说的是作为过载保护的自动断路器,其延时脱扣器的电流整定值可按所控制电动机额定电流的1.7倍选择,即3.5倍千瓦数选择。热脱扣器电流整定值,应等于或略大于电动机的额定电流,即按电动机容量千瓦数的2倍选择。

  10、已知异步电动机容量,求算其空载电流

  口诀:

  电动机空载电流,容量八折左右求;

  新大极数少六折,旧小极多千瓦数。

  一般小型电动机的空载电流约为额定电流的30%~70%,大中型电动机的空载电流约为额定电流的20%~40%。具体到某台电动机的空载电流是多少,在电动机的铭牌或产品说明书上,一般不标注。可电工常需知道此数值是多少,以此数值来判断电动机修理的质量好坏,能否使用。

  它符合“电动机的空载电流一般是其额定电流的1/3”。同时它符合实践经验:“电动机的空载电流,不超过容量千瓦数便可使用”的原则(指检修后的旧式、小容量电动机)。口诀“容量八折左右求”是指一般电动机的空载电流值是电动机额定容量千瓦数的0.8倍左右。中型、4或6极电动机的空载电流,就是电动机容量千瓦数的0.8倍;新系列,大容量,极数偏小的2级电动机,其空载电流计算按“新大极数少六折”;对旧的、老式系列、较小容量,极数偏大的8极以上电动机,其空载电流,按“是小极多千瓦数”计算,即空载电流值近似等于容量千瓦数,但一般是小于千瓦数。

  11、已知电力变压器容量,求算其二次侧(0.4kV)出线自动断路器瞬时脱扣器整定电流值口诀:

  配变二次侧供电,最好配用断路器;

  瞬时脱扣整定值,三倍容量千伏安。

  12、判断同相与异相口诀

  判断两线相同异,两手各持一支笔,

  两脚与地相绝缘,两笔各触一要线,

  用眼观看一支笔,不亮同相亮为异。

  此项测试时,切记两脚与地必须绝缘。因为我国大部分是380/220V供电,且变压器普遍采用中性点直接接地,所以做测试时,人体与大地之间一定要绝缘,避免构成回路,以免误判断;测试时,两笔亮与不亮显示一样,故只看一支则可。

  13、判断直流电正负极口诀:

  电笔判断正负极,观察氖管要心细,

  前端明亮是负极,后端明亮为正极。

  14、判断交流电与直流电口诀

  电笔判断交直流,交流明亮直流暗,

  交流氖管通身亮,直流氖管亮一端。

  15、判断直流电源有无接地,正负极接地的区别口诀

  变电所直流系数,电笔触及不发亮;

  若亮靠近笔尖端,正极有接地故障;

  若亮靠近手指端,接地故障在负极。

  16、铜芯电缆导线安全载流量计算:

  10下五,100上二,16、25四,35、50三,70、95两倍半。

  穿管、温度八、九折,裸线加一半。铜线升级算。

  口诀中的阿拉伯数字与倍数的排列关系如下:

  对于1.5、2.5、4、6、10mm2的导线可将其截面积数乘以5倍。

  对于16、25mm2的导线可将其截面积数乘以4倍。

  对于35、50mm2的导线可将其截面积数乘以3倍。

  对于70、95mm2的导线可将其截面积数乘以2.5倍。

  对于120、150、185mm2的导线可将其截面积数乘以2倍。

  铜线面积升一级算

  断路器由于是进行断路保护因此可以选择大于电机额定电流,通常为电机额定电流1.2倍,保守为1.6倍,热继电器通常选择了0.95~1.05倍电机额定电流,个人倾向于1倍

  交流接触器的选择

  (1)持续运行的设备.接触器按67-75%算.即100A的交流接触器,只能控制最大额定电流是67-75A以下的设备.

  (2)间断运行的设备.接触器按80%算.即100A的交流接触器,只能控制最大额定电流是80A以下的设备.

  (3)反复短时工作的设备.接触器按116-120%算.即100A的交流接触器,只能控制最大额定电流是116-120A以下的设备.

  还要考虑工作环境和接触器的结构形式。

  电焊机

  1、380V电焊机I=1000S/U=1000S/380=2.63S

  220V电焊机I=1000s/U=1000S/220=4.55S

  可总结为:三百八的电焊机,二点六倍千伏安

  二百二的电焊机,四点五倍千伏安

  2.电焊机通常分为电弧焊和电阻焊两大类,其中电阻焊(对焊、点焊、缝焊等)接用的时间更短些。上面说过,对它们配线可以小一些,具体作法是:

  先将容量改变(降低),可按“孤焊八折,阻焊半”的口诀进行。即电弧焊机类将容量打八折,电阻焊机类打对折(乘0.5),然后再按这改变了的容量进行配电

  1、30千伏安交流弧焊机,按“孤焊八折”,则30×0.8=4,即配电时容量可改为24千伏安。当接用380伏单相时,可按24×2.5=60安配电。

  2、30千伏安点焊机,按“阻焊半”,则30×0.5=15,即可按15千伏安配电。当为380伏单相时,按15×2.5=37.5A配电。

  星三角启动的电机接触器选型

  1电机铭牌上所标额定电流指的是线电流。

  2电机铭牌上的额定功率指的是在规定接法的条件下的功率。

  3采用星三角启动的电机,转换后两个在工作的接触器只承受0.58倍的线电流。

  4规定采用三角形接法的电机,改成星形接法时电机功率会大幅下降。此时线电流也下降到原来的0.58倍。

  电气元器件符号大全

  文字符

  仪表P

  电流表PA电压表PV有功电度表PJ无功电度表PJR频率表PF

  相位表PPA最大需量表(负荷监控仪)PM功率因数表PPF有功功率表PW无功功率表PR

  无功电流表PAR

  信号灯H

  声信号HA光信号HS指示灯HL红色灯HR

  绿色灯HG黄色灯HY蓝色灯HB白色灯HW

  连接X

  连接片XB插头XP插座XS端子板XT

  母线W

  电线,电缆,母线W直流母线WB插接式(馈电)母线WIB电力分支线WP

  照明分支线WL应急照明分支线WE电力干线WPM照明干线WLM

  应急照明干线WEM滑触线WT合闸小母线WCL控制小母线WC

  信号小母线WS闪光小母线WF事故音响小母线WFS预告音响小母线WPS

  电压小母线WV事故照明小母线WELM

  熔断F

  避雷器F熔断器FU快速熔断器FTF

  跌落式熔断器FF限压保护器件FV

  电容C

  电容器C电力电容器CE

  接触开关S

  正转按钮SBF反转按钮SBR停止按钮SBS紧急按钮SBE

  试验按钮SBT复位按钮SR限位开关SQ接近开关SQP

  手动控制开关SH时间控制开关SK液位控制开关SL湿度控制开关SM

  压力控制开关SP速度控制开关SS温度控制开关,辅助开关ST电压表切换开关SV

  电流表切换开关SA

  整流U

  整流器U可控硅整流器UR控制电路有电源的整流器VC变频器UF

  变流器UC逆变器UI

  电机M

  电动机M异步电动机MA同步电动机MS直流电动机MD

  绕线转子感应电动机MW鼠笼型电动机MC

  执行器Y

  电动阀YM电磁阀YV防火阀YF排烟阀YS

  电磁锁YL跳闸线圈YT合闸线圈YC气动执行器YPA,YA

  电动执行器YE

  电阻R

  电阻器,变阻器R电位器RP热敏电阻RT光敏电阻RL

  压敏电阻RPS接地电阻RG放电电阻RD启动变阻器RS

  频敏变阻器RF限流电阻器RC

  电感L

  感应线圈,电抗器L励磁线圈LF消弧线圈LA滤波电容器LL

  电热E

  发热器件(电加热)EH照明灯(发光器件)EL空气调节器EV电加热器加热元件EE

  转换器B

  光电池,热电传感器B压力变换器BP温度变换器BT速度变换器BV

  时间测量传感器BT1,BK液位测量传感器BL温度测量传感器BH,BM

  图文符

  

图片


  

图片


  

图片


  

图片


  

图片


  电 阻

  导电体对电流的阻碍作用称为电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。

  一、电阻的型号命名方法:

  国产电阻器的型号由四部分组成(不适用敏感电阻)

  第一部分:主称 ,用字母表示,表示产品的名字。如R表示电阻,W表示电位器。

  第二部分:材料 ,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。

  第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频 、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。

  第四部分 : 序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等 例如:R T 1 1 型普通碳膜电阻

  二、电阻器的分类

  1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。

  2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。

  3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。

  4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。

  三、主要特性参数

  1、标称阻值:电阻器上面所标示的阻值。

  2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级

  3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。

  线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500

  非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100

  4、额定电压:由阻值和额定功率换算出的电压。

  5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。

  6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。

  7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。

  8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。

  9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。

  四、电阻器阻值标示方法

  1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。

  2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。

  表示允许误差的文字符号

  文字符号 D F G J K M

  允许偏差 ±0.5% ±1% ±2% ±5% ±10% ±20%

  3、数码法:在电阻器上用三位数码表示标称值的标志方法。数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。偏差通常采用文字符号表示。

  4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。国外电阻大部分采用色标法。

  黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9、金-±5%、银-±10%、无色-±20%

  当电阻为四环时,最后一环必为金色或银色,前两位为有效数字, 第三位为乘方数,第四位为偏差。

  当电阻为五环时,最後一环与前面四环距离较大。前三位为有效数字, 第四位为乘方数, 第五位为偏差。

  

图片


  五、常用电阻器

  1、电位器

  电位器是一种机电元件,他靠电刷在电阻体上的滑动,取得与电刷位移成一定关系的输出电压。

  1.1 合成碳膜电位器

  电阻体是用经过研磨的碳黑,石墨,石英等材料涂敷于基体表面而成,该工艺简单,是目前应用最广泛的电位器。特点是分辩力高耐磨性好,寿命较长。缺点是电流噪声,非线性大, 耐潮性以及阻值稳定性差。

  1.2 有机实心电位器

  有机实心电位器是一种新型电位器,它是用加热塑压的方法,将有机电阻粉压在绝缘体的凹槽内。有机实心电位器与碳膜电位器相比具有耐热性好、功率大、可靠性高、耐磨性好的优点。但温度系数大、动噪声大、耐潮性能差、制造工艺复杂、阻值精度较差。在小型化、高可靠、高耐磨性的电子设备以及交、直流电路中用作调节电压、电流。

  1.3 金属玻璃铀电位器

  用丝网印刷法按照一定图形,将金属玻璃铀电阻浆料涂覆在陶瓷基体上,经高温烧结而成。特点是:阻值范围宽,耐热性好,过载能力强,耐潮,耐磨等都很好,是很有前途的电位器品种,缺点是接触电阻和电流噪声大。

  1.4 绕线电位器

  绕线电位器是将康铜丝或镍铬合金丝作为电阻体,并把它绕在绝缘骨架上制成。绕线电位器特点是接触电阻小,精度高,温度系数小,其缺点是分辨力差,阻值偏低,高频特性差。主要用作分压器、变阻器、仪器中调零和工作点等。

  1.5 金属膜电位器

  金属膜电位器的电阻体可由合金膜、金属氧化膜、金属箔等分别组成。特点是分辩力高、耐高温、温度系数小、动噪声小、平滑性好。

  1.6 导电塑料电位器

  用特殊工艺将DAP(邻苯二甲酸二稀丙脂)电阻浆料覆在绝缘机体上,加热聚合成电阻膜,或将DAP电阻粉热塑压在绝缘基体的凹槽内形成的实心体作为电阻体。特点是:平滑性好、分辩力优异耐磨性好、寿命长、动噪声小、可靠性极高、耐化学腐蚀。用于宇宙装置、导弹、飞机雷达天线的伺服系统等。

  1.7 带开关的电位器

  有旋转式开关电位器、推拉式开关电位器、推推开关式电位器

  1.8 预调式电位器

  预调式电位器在电路中,一旦调试好,用蜡封住调节位置,在一般情况下不再调节。

  1.9 直滑式电位器

  采用直滑方式改变电阻值。

  1.10 双连电位器

  有异轴双连电位器和同轴双连电位器

  1.11 无触点电位器

  无触点电位器消除了机械接触,寿命长、可靠性高,分光电式电位器、磁敏式电位器等。

  2、实芯碳质电阻器

  用碳质颗粒壮导电物质、填料和粘合剂混合制成一个实体的电阻器。特点:价格低廉,但其阻值误差、噪声电压都大,稳定性差,目前较少用。

  3、绕线电阻

  用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。绕线电阻具有较低的温度系数,阻值精度高, 稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。

  4、薄膜电阻器

  用蒸发的方法将一定电阻率材料蒸镀于绝缘材料表面制成。主要如下:

  4.1 碳膜电阻器

  将结晶碳沉积在陶瓷棒骨架上制成。碳膜电阻器成本低、性能稳定、阻值范围宽、温度系数和电压系数低,是目前应用最广泛的电阻器。

  4.2 金属膜电阻器。

  用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。金属膜电阻比碳膜电阻的精度高,稳定性好,噪声, 温度系数小。在仪器仪表及通讯设备中大量采用。

  4.3 金属氧化膜电阻器

  在绝缘棒上沉积一层金属氧化物。由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。

  4.4 合成膜电阻

  将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压, 高阻, 小型电阻器。

  5、金属玻璃铀电阻器

  将金属粉和玻璃铀粉混合,采用丝网印刷法印在基板上。耐潮湿, 高温, 温度系数小,主要应用于厚膜电路。

  6、贴片电阻SMT

  片状电阻是金属玻璃铀电阻的一种形式,他的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,电极采用银钯合金浆料。体积小,精度高,稳定性好,由于其为片状元件,所以高频性能好。

  7、敏感电阻

  敏感电阻是指器件特性对温度,电压,湿度,光照,气体, 磁场,压力等作用敏感的电阻器。敏感电阻的符号是在普通电阻的符号中加一斜线,并在旁标注敏感电阻的类型,如:t. v等。

  7.1、压敏电阻

  主要有碳化硅和氧化锌压敏电阻,氧化锌具有更多的优良特性。

  7.2、湿敏电阻

  由感湿层,电极,绝缘体组成,湿敏电阻主要包括氯化锂湿敏电阻,碳湿敏电阻,氧化物湿敏电阻。氯化锂湿敏电阻随湿度上升而电阻减小,缺点为测试范围小,特性重复性不好,受温度影响大。碳湿敏电阻缺点为低温灵敏度低,阻值受温度影响大,由老化特性,较少使用。氧化物湿敏电阻性能较优越,可长期使用,温度影响小,阻值与湿度变化呈线性关系。有氧化锡,镍铁酸盐,等材料。

  7.3、光敏电阻

  光敏电阻是电导率随着光量力的变化而变化的电子元件,当某种物质受到光照时,载流子的浓度增加从而增加了电导率,这就是光电导效应。

  7.4、气敏电阻

  利用某些半导体吸收某种气体后发生氧化还原反应制成,主要成分是金属氧化物,主要品种有:金属氧化物气敏电阻、复合氧化物气敏电阻、陶瓷气敏电阻等。

  7.5、力敏电阻

  力敏电阻是一种阻值随压力变化而变化的电阻,国外称为压电电阻器。所谓压力电阻效应即半导体材料的电阻率随机械应力的变化而变化的效应。可制成各种力矩计,半导体话筒,力传感器等。主要品种有硅力敏电阻器,硒碲合金力敏电阻器,相对而言,合金电阻器具有更高灵敏度。

  7.6、热敏电阻

  热敏电阻是敏感元件的一类,其电阻值会随着热敏电阻本体温度的变化呈现出阶跃性的变化,具有半导体特性.

  热敏电阻按照温度系数的不同分为: 正温度系数热敏电阻(简称PTC热敏电阻)和负温度系数热敏电阻(简称NTC热敏电阻)。

  正温度热敏电阻(PTC Thermistor)

  

图片


  

图片


  PTC是Positive Temperature Coefficient 的缩写,意思是正的温度系数,泛指正温度系数很大的半导体材料或元器件.通常我们提到的PTC是指正温度系数热敏电阻,简称PTC热敏电阻.

  PTC热敏电阻是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时, 它的电阻值随着温度的升高呈阶跃性的增高.

  PTC热敏电阻根据其材质的不同分为: 陶瓷PTC热敏电阻和有机高分子PTC热敏电阻。

  目前大量被使用的PTC热敏电阻种类:

  恒温加热用PTC热敏电阻

  过流保护用PTC热敏电阻

  空气加热用PTC热敏电阻

  延时启动用PTC热敏电阻

  传 感 器用PTC热敏电阻

  自动消磁用PTC热敏电阻

  一般情况下,有机高分子PTC热敏电阻适合过流保护用途,陶瓷PTC热敏电阻可适用于以上所列各种用途.

  负温度热敏电阻(NTC Thermistor)

  

图片


  

图片


  NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件.通常我们提到的NTC是指负温度系数热敏电阻,简称NTC热敏电阻.

  NTC热敏电阻是一种典型具有温度敏感性的半导体电阻,它的电阻值随着温度的升高呈阶跃性的减小.

  NTC热敏电阻是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的.这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料.温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低.

  NTC热敏电阻根据其用途的不同分为:

  功率型NTC热敏电阻

  补偿型NTC热敏电阻

  测温型NTC热敏电阻

  电 容

  电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合, 旁路,滤波,调谐回路, 能量转换,控制电路等方面。用C表示电容,电容单位有法拉(F)、微法拉(uF)、皮法拉(pF),1F=10^6uF=10^12pF

  

图片


  一、电容器的型号命名方法

  国产电容器的型号一般由四部分组成(不适用于压敏、可变、真空电容器)。依次分别代表名称、材料、分类和序号。

  第一部分:名称,用字母表示,电容器用C。

  第二部分:材料,用字母表示。

  第三部分:分类,一般用数字表示,个别用字母表示。

  第四部分:序号,用数字表示。

  用字母表示产品的材料:A-钽电解、B-聚苯乙烯等非极性薄膜、C-高频陶瓷、D-铝电解、E-其它材料电解、G-合金电解、H-复合介质、I-玻璃釉、J-金属化纸、L-涤纶等极性有机薄膜、N-铌电解、O-玻璃膜、Q-漆膜、T-低频陶瓷、V-云母纸、Y-云母、Z-纸介

  二、电容器的分类

  按照结构分三大类:固定电容器、可变电容器和微调电容器。

  按电解质分类有:有机介质电容器、无机介质电容器、电解电容器和空气介质电容器等。

  按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器。

  高频旁路:陶瓷电容器、云母电容器、玻璃膜电容器、涤纶电容器、玻璃釉电容器。

  低频旁路:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器。

  滤 波:铝电解电容器、纸介电容器、复合纸介电容器、液体钽电容器。

  调 谐:陶瓷电容器、云母电容器、玻璃膜电容器、聚苯乙烯电容器。

  高频耦合:陶瓷电容器、云母电容器、聚苯乙烯电容器。

  低频耦合:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器、固体钽电容器。

  小型电容:金属化纸介电容器、陶瓷电容器、铝电解电容器、聚苯乙烯电容器、固体钽电容器、玻璃釉电容器、金属化涤纶电容器、聚丙烯电容器、云母电容器。

  三、常用电容器

  

图片


  1、铝电解电容器

  用浸有糊状电解质的吸水纸夹在两条铝箔中间卷绕而成,薄的化氧化膜作介质的电容器.因为氧化膜有单向导电性质,所以电解电容器具有极性.容量大,能耐受大的脉动电流容量误差大,泄漏电流大;普通的不适于在高频和低温下应用,不宜使用在25kHz以上频率低频旁路、信号耦合、电源滤波

  2、钽电解电容器

  用烧结的钽块作正极,电解质使用固体二氧化锰温度特性、频率特性和可*性均优于普通电解电容器,特别是漏电流极小,贮存性良好,寿命长,容量误差小,而且体积小,单位体积下能得到最大的电容电压乘积对脉动电流的耐受能力差,若损坏易呈短路状态超小型高可*机件中

  3、薄膜电容器

  结构与纸质电容器相似,但用聚脂、聚苯乙烯等低损耗塑材作介质频率特性好,介电损耗小不能做成大的容量,耐热能力差滤波器、积分、振荡、定时电路

  4、瓷介电容器

  穿心式或支柱式结构瓷介电容器,它的一个电极就是安装螺丝。引线电感极小,频率特性好,介电损耗小,有温度补偿作用不能做成大的容量,受振动会引起容量变化特别适于高频旁路

  5、独石电容

  (多层陶瓷电容器)在若干片陶瓷薄膜坯上被覆以电极桨材料,叠合后一次绕结成一块不可分割的整体,外面再用树脂包封而成小体积、大容量、高可*和耐高温的新型电容器,高介电常数的低频独石电容器也具有稳定的性能,体积极小,Q值高容量误差较大噪声旁路、滤波器、积分、振荡电路

  6、纸质电容器

  一般是用两条铝箔作为电极,中间以厚度为0.008~0.012mm的电容器纸隔开重叠卷绕而成。制造工艺简单,价格便宜,能得到较大的电容量

  一般在低频电路内,通常不能在高于3~4MHz的频率上运用。油浸电容器的耐压比普通纸质电容器高,稳定性也好,适用于高压电路

  7、微调电容器

  电容量可在某一小范围内调整,并可在调整后固定于某个电容值。

  瓷介微调电容器的Q值高,体积也小,通常可分为圆管式及圆片式两种。

  8、云母和聚苯乙烯介质的通常都采用弹簧式东,结构简单,但稳定性较差。

  线绕瓷介微调电容器是拆铜丝〈外电极〉来变动电容量的,故容量只能变小,不适合在需反复调试的场合使用

  9、陶瓷电容器

  用高介电常数的电容器陶瓷〈钛酸钡一氧化钛〉挤压成圆管、圆片或圆盘作为介质,并用烧渗法将银镀在陶瓷上作为电极制成。它又分高频瓷介和低频瓷介两种。

  具有小的正电容温度系数的电容器,用于高稳定振荡回路中,作为回路电容器及垫整电容器。低频瓷介电容器限于在工作频率较低的回路中作旁路或隔直流用,或对稳定性和损耗要求不高的场合〈包括高频在内〉。这种电容器不宜使用在脉冲电路中,因为它们易于被脉冲电压击穿。高频瓷介电容器适用于高频电路

  云母电容器就结构而言,可分为箔片式及被银式。被银式电极为直接在云母片上用真空蒸发法或烧渗法镀上银层而成,由于消除了空气间隙,温度系数大为下降,电容稳定性也比箔片式高。频率特性好,Q值高,温度系数小不能做成大的容量广泛应用在高频电器中,并可用作标准电容器

  10、玻璃釉电容器由一种浓度适于喷涂的特殊混合物喷涂成薄膜而成,介质再以银层电极经烧结而成"独石"结构性能可与云母电容器媲美,能耐受各种气候环境,一般可在200℃或更高温度下工作,额定工作电压可达500V,损耗tgδ0.0005~0.008

  四、电容器主要特性参数

  1、标称电容量和允许偏差

  标称电容量是标志在电容器上的电容量。

  电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。

  精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、 Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%)

  一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。

  2、额定电压

  在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。

  3、绝缘电阻

  直流电压加在电容上,并产生漏电电流,两者之比称为绝缘电阻.

  当电容较小时,主要取决于电容的表面状态,容量〉0.1uf时,主要取决于介质的性能,绝缘电阻越小越好。

  电容的时间常数:为恰当的评价大容量电容的绝缘情况而引入了时间常数,他等于电容的绝缘电阻与容量的乘积。

  4、损耗

  电容在电场作用下,在单位时间内因发热所消耗的能量叫做损耗。各类电容都规定了其在某频率范围内的损耗允许值,电容的损耗主要由介质损耗,电导损耗和电容所有金属部分的电阻所引起的。

  在直流电场的作用下,电容器的损耗以漏导损耗的形式存在,一般较小,在交变电场的作用下,电容的损耗不仅与漏导有关,而且与周期性的极化建立过程有关。

  5、频率特性

  随着频率的上升,一般电容器的电容量呈现下降的规律。

  五、电容器容量标示

  1、直标法

  用数字和单位符号直接标出。如01uF表示0.01微法,有些电容用“R”表示小数点,如R56表示0.56微法。

  2、文字符号法

  用数字和文字符号有规律的组合来表示容量。如p10表示0.1pF,1p0表示1pF,6P8表示6.8pF, 2u2表示2.2uF.

  3、色标法

  用色环或色点表示电容器的主要参数。电容器的色标法与电阻相同。

  电容器偏差标志符号:+100%-0--H、+100%-10%--R、+50%-10%--T、+30%-10%--Q、+50%-20%--S、+80%-20%--Z。

  电 感

  电感线圈是由导线一圈*一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。用L表示,单位有亨利(H)、毫亨利 (mH)、微亨利(uH),1H=10^3mH=10^6uH。

  

图片


  一、电感的分类

  按 电感形式 分类:固定电感、可变电感。

  按 导磁体性质 分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。

  按 工作性质 分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。

  按 绕线结构 分类:单层线圈、多层线圈、蜂房式线圈。

  二、电感线圈的主要特性参数

  1、电感量L

  电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。

  2、感抗XL

  电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL

  3、品质因素Q

  品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R

  线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。

  4、分布电容

  线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。

  

图片


  三、常用线圈

  1、单层线圈

  单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。

  2、蜂房式线圈

  如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。而其旋转一周,导线来回弯折的次数,常称为折点数。蜂房式绕法的优点是体积小,分布电容小,而且电感量大。蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小

  3、铁氧体磁芯和铁粉芯线圈

  线圈的电感量大小与有无磁芯有关。在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素。

  4、铜芯线圈

  铜芯线圈在超短波范围应用较多,利用旋动铜芯在线圈中的位置来改变电感量,这种调整比较方便、耐用。

  5、色码电感器

  色码电感器是具有固定电感量的电感器,其电感量标志方法同电阻一样以色环来标记。

  6、阻流圈(扼流圈)

  限制交流电通过的线圈称阻流圈,分高频阻流圈和低频阻流圈。

  7、偏转线圈

  偏转线圈是电视机扫描电路输出级的负载,偏转线圈要求:偏转灵敏度高、磁场均匀、Q值高、体积小、价格低。


责任编辑:David

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: 元器件选型

相关资讯