0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >业界动态 > Mac芯片代工会像代工A系列芯片那样赚钱吗

Mac芯片代工会像代工A系列芯片那样赚钱吗

2016-11-14
类别:业界动态
eye 183
文章创建人 拍明


    自从A系列芯片为苹果公司iOS设备创造了巨大优势之后,坊间一直盛传苹果公司将在Mac中使用自主设计芯片,而有的人担心英特尔如果失去了苹果的订单,那么他们可能会蒙受巨大的损失。确实如此吗?

  这种假设是建立在TSMC为苹果代工时,每一块芯片要可能要价300美元的基础上。如果英特尔也是这样的话,苹果每年Mac销量大约2000万,那也就是说苹果每年能为英特尔创造60亿美元的营收。

图片5.png

  从英特尔的 2013 年、2014 年和 2015 年 10-k 文件来看,这几年苹果在英特尔营收中占据的比例不到 10%。这几年英特尔的营收大约为 600 亿美元,完全就证明了苹果不可能每块芯片给英特尔 300 美元。

  另外对于 TSMC 如果代工苹果 Mac 处理器,那么由此创造的营收将会大于他们代工A系列处理器获得的营收还要多。其实这样的假设也是不成立的。

  上一财年苹果iPhone出货大约 2.12 亿,iPad 出货量在 4559 万左右,而同时内Mac的出货量只有 1848.4 万。

  至于芯片面积,其实 Mac 使用的英特尔处理器的面积并没有比 iPhone 或 iPad 的要打出很多。A10 Fusion 处理器使用 TSMC 的 16 纳米制程,它的面积为 125 平方毫米,A9X 的为 147 平方毫米。对于TSMC来说,这样一颗芯片真的不算小了,即使 Mac 使用的芯片的大小是 iPad 的两倍,TSMC拿下这些订单其实也就相当于大约3600万iPad处理器能够带来的营收。

  TSMC 的 2015 年 10-F 文件显示他们目前有两家很大的客户,其中之一自然是苹果。2015 年这两家大客户分别占据TSMC总营收16%的份额,也就是说 2015 年苹果为 TSMC(代工 A8、A8X 以及部 A9 芯片)创造的营收大约为 41.2 亿美元

  而大约 1800 万 Mac 处理器创造的营收是不可能接近代工其他芯片能给 TSM C带来的营收。其实,即使 TSMC 每块 Mac 芯片能够要加 50 美元(这个假设其实还是有点高的),那每年其创造的营收也要低于 10 亿美元。

  TSMC 的年营收大约 300 亿美元,10 亿美元对于他们来说就是 3.33% 的增长率,虽然能赚点钱,但是对于他们来说并不是一个重要拐点。


    以太网芯片


    是一款微小的控制器,把太网媒体接入控制器(MAC)和物理接口收发器(PHY)整合进同一芯片,能去掉许多外接元器件。

    优势

    这种方案可使MAC和PHY实现很好的匹配,同时还可减小引脚数、缩小芯片面积。单片以太网微控制器还降低了功耗,特别是在采用掉电模式的情况下。

    媒体接入控制器

    以太网MAC由IEEE-802.3以太网标准定义。它实现了一个数据链路层。最新的MAC同时支持10Mbps和100Mbps两种速率。通常情况下,它实现MII接口。

    媒体独立接口,它是IEEE-802.3定义的以太网行业标准。它包括一个数据接口,以及一个MAC和PHY之间的管理接口(图1)。数据接口包括分别用于发送器和接收器的两条独立信道。每条信道都有自己的数据、时钟和控制信号。MII数据接口总共需要16个信号。管理接口是个双信号接口:一个是时钟信号,另一个是数据信号。通过管理接口,上层能监视和控制PHY。

    物理接口收发器,它实现物理层。IEEE-802.3标准定义了以太网PHY。它符合IEEE-802.3k中用于10BaseT(第14条)和100BaseTX(第24条和第25条)的规范。

    PHY提供绝大多数模拟支持,但在一个典型实现中,仍需外接6、7只分立元件及一个局域网绝缘模块。绝缘模块一般采用一个1:1的变压器。 如裕泰电子公司的YL18-2050S,YL18-2401S,YT37-1107S等都是比较常用的型号。 这些部件的主要功能是为了保护PHY免遭由于电气失误而引起的损坏。

   网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。物理层的芯片称之为PHY。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。以太网卡中数据链路层的芯片称之为MAC控制器。很多网卡的这两个部分是做到一起的。他们之间的关系是pci总线接mac总线,mac接phy,phy接网线(当然也不是直接接上的,还有一个变压装置)。

 

   phy芯片,mac芯片,switch芯片有什么区别


    什么是MAC?

  首先我们来说说以太网卡的MAC芯片的功能。以太网数据链路层其实包含MAC(介质访问控制)子层和LLC(逻辑链路控制)子层。一块以太网卡MAC芯片的作用不但要实现MAC子层和LLC子层的功能,还要提供符合规范的PCI界面以实现和主机的数据交换。

  MAC从PCI总线收到IP数据包(或者其他网络层协议的数据包)后,将之拆分并重新打包成最大1518Byte,最小64Byte的帧。这个帧里面包括了目标MAC地址、自己的源MAC地址和数据包里面的协议类型(比如IP数据包的类型用80表示)。最后还有一个DWORD(4Byte)的CRC码。

  可是目标的MAC地址是哪里来的呢?这牵扯到一个ARP协议(介乎于网络层和数据链路层的一个协议)。第一次传送某个目的IP地址的数据的时候,先会发出一个ARP包,其MAC的目标地址是广播地址,里面说到:”谁是xxx.xxx.xxx.xxx这个IP地址的主人?”因为是广播包,所有这个局域网的主机都收到了这个ARP请求。收到请求的主机将这个IP地址和自己的相比较,如果不相同就不予理会,如果相同就发出ARP响应包。这个IP地址的主机收到这个ARP请求包后回复的ARP响应里说到:”我是这个IP地址的主人”。这个包里面就包括了他的MAC地址。以后的给这个IP地址的帧的目标MAC地址就被确定了。(其它的协议如IPX/SPX也有相应的协议完成这些操作。)

  IP地址和MAC地址之间的关联关系保存在主机系统里面,叫做ARP表,由驱动程序和操作系统完成。在Microsoft的系统里面可以用 arp -a 的命令查看ARP表。收到数据帧的时候也是一样,做完CRC以后,如果没有CRC效验错误,就把帧头去掉,把数据包拿出来通过标准的借口传递给驱动和上层的协议客栈,最终正确的达到我们的应用程序。

  还有一些控制帧,例如流控帧也需要MAC直接识别并执行相应的行为。

  以太网MAC芯片的一端接计算机PCI总线,另外一端就接到PHY芯片上。以太网的物理层又包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA(物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。而PHY芯片是实现物理层的重要功能器件之一,实现了前面物理层的所有的子层的功能。

  3.网络传输的流程

  PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC),每4bit就增加1bit的检错码,然后把并行数据转化为串行流数据,再按照物理层的编码规则(10Based-T的NRZ编码或100based-T的曼彻斯特编码)把数据编码,再变为模拟信号把数据送出去。(注:关于网线上数据是数字的还是模拟的比较不容易理解清楚。最后我再说)

  收数据时的流程反之。

  PHY还有个重要的功能就是实现CSMA/CD的部分功能。它可以检测到网络上是否有数据在传送,如果有数据在传送中就等待,一旦检测到网络空闲,再等待一个随机时间后将送数据出去。如果两块网卡碰巧同时送出了数据,那样必将造成冲突,这时候,冲突检测机构可以检测到冲突,然后各等待一个随机的时间重新发送数据。

  这个随机时间很有讲究的,并不是一个常数,在不同的时刻计算出来的随机时间都是不同的,而且有多重算法来应付出现概率很低的同两台主机之间的第二次冲突。

  许多网友在接入Internt宽带时,喜欢使用”抢线”强的网卡,就是因为不同的PHY碰撞后计算随机时间的方法设计上不同,使得有些网卡比较”占便宜”。不过,抢线只对广播域的网络而言的,对于交换网络和ADSL这样点到点连接到局端设备的接入方式没什么意义。而且”抢线”也只是相对而言的,不会有质的变化。

  4.关于网络间的冲突


    现在交换机的普及使得交换网络的普及,使得冲突域网络少了很多,极大地提高了网络的带宽。但是如果用HUB,或者共享带宽接入Internet的时候还是属于冲突域网络,有冲突碰撞的。交换机和HUB最大的区别就是:一个是构建点到点网络的局域网交换设备,一个是构建冲突域网络的局域网互连设备。

  我们的PHY还提供了和对端设备连接的重要功能并通过LED灯显示出自己目前的连接的状态和工作状态让我们知道。当我们给网卡接入网线的时候,PHY不断发出的脉冲信号检测到对端有设备,它们通过标准的”语言”交流,互相协商并却定连接速度、双工模式、是否采用流控等。

  通常情况下,协商的结果是两个设备中能同时支持的最大速度和最好的双工模式。这个技术被称为Auto Negotiation或者NWAY,它们是一个意思–自动协商。

  5.PHY的输出部分


    现在来了解PHY的输出后面部分。一颗CMOS制程的芯片工作的时候产生的信号电平总是大于0V的(这取决于芯片的制程和设计需求),但是这样的信号送到100米甚至更长的地方会有很大的直流分量的损失。而且如果外部网现直接和芯片相连的话,电磁感应(打雷)和静电,很容易造成芯片的损坏。

  再就是设备接地方法不同,电网环境不同会导致双方的0V电平不一致,这样信号从A传到B,由于A设备的0V电平和B点的0V电平不一样,这样会导致很大的电流从电势高的设备流向电势低的设备。我们如何解决这个问题呢?

  这时就出现了Transformer(隔离变压器)这个器件。它把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。这样不但使网线和PHY之间没有物理上的连接而换传递了信号,隔断了信号中的直流分量,还可以在不同0V电平的设备中传送数据。

  隔离变压器本身就是设计为耐2KV~3KV的电压的。也起到了防雷感应(我个人认为这里用防雷击不合适)保护的作用。有些朋友的网络设备在雷雨天气时容易被烧坏,大都是PCB设计不合理造成的,而且大都烧毁了设备的接口,很少有芯片被烧毁的,就是隔离变压器起到了保护作用。



责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: 芯片代工 芯片

相关资讯