0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >基础知识 > 应用于汽车的D类放大器电路设计与调试

应用于汽车的D类放大器电路设计与调试

2017-11-23
类别:基础知识
eye 228
文章创建人 拍明
  随着高传真音响系统体积越来越大、功耗越来越高,对D类音频放大器进行重新设计,将可满足汽车音响 设计特殊挑战。对车用资讯和资讯娱乐系统而言,其功能和子系统的不断增多,对车前部和车身的音响功率预算要求已达极限。汽车音响设计师在寻找高性能、低成 本方案。对许多应用来说,采用超高效率的D类音频放大器可能是最佳选择。

  特别是对高阶汽车来说,多声道、多扬声器系统已成为标准配备。汽车音响工程师所面临的设计挑战包括:保持甚至超越顾客对极高音响放大器水准及超低失真的期待;以及为因应向双甚至三声道扬声器系统和重低音转变的趋势,需要更高功率的设计。

  与家庭娱乐系统的音响放大器不同,设计工程师无法简单地加大功率,同时找到一种可控制音频品质以满足这些目标的方法。位於驾驶仪表板之下的空间非常有限,也不允许大量发热。另外,车内的电源电压也受到限制,且常常会有因诸如电压跳变和来自车内其他电子和机械系统干扰导致的电压异常。

  每一种新车型都会在音响设计中加入新的子系统,例如:视讯甚或导航和全球定位系统GPS)等。如此一来,音响系统就面临着对更多扬声器、更多声道、更高功率的要求,通常情况下,留给音响驱动系统的空间也就更局促。

  对音响功率的要求一直在增加。有两种基本方式可满足这些需求。传统方式是增加更多的由标准音响放大器驱动的声道。在每一放大器驱动一个扬声器的主动系统中即采用该方案。但也就是因为声道数的增加,这种方式变得愈加复杂,且越来越难以为继。

  另一种方法是透过减少扬声器的阻抗或利用DC/DC变换器增加电源电压来增加功率输出。采用该方法,单一放大器可驱动两或三个扬声器,且仍能得到高传真的音频输出。

  虽然第二个方案较不复杂,但两种方案仍有共通点:它们都增加了耗散功耗。因此,为满足功耗指标,采用更高效的系统成为具体方案的关键。

  对更高效放大器的需求,己经使对D类音频放大器的讨论成为音响设计师之间的热门话题。

  D类音频的效率可高达95%,而AB类音频放大器的效率只有约50%;因此,D类音频放大器在提供 优异音质的同时还可掌控功耗。D类音频放大器良好的功率效率意味着它们只需更小的散热器,为狭窄的车前单元节省空间,以安放更多的电子系统。但D类比AB 类放大器要贵得多,并需要专门的设计考虑。

  图1显示的是在输出功率范围内,AB类放大器(图1a)和D类音频放大器(图1b)的相对效率。

AB类放大器和D类音频放大器的相对效率

  图1 在更宽的范围内,D类音频放大器具有更高效率

  要记住的是:这两种方法并非水火不容。实际上,创新的工程设计经常采用混合方案。汽车音响也不例外。设计工程师将根据以下几个关键考虑来决策:

  车前单元的大小、功率要求和散热能力

  音响系统的成本

  音响性能

  如何降低来自其他电子和机电设备的干扰

  1 放大器的技术基础

  为充分了解D类音频放大器,我们首先简单介绍该放大器的技术基础。

  A类放大器的输出元件在整个周期都持续导通。换言之,偏置电流一直流过输出元件。A类放大器具有最好的线性输出、失真最小。但缺点是效率太低,只有约20%。

  B类放大器的输出元件分别在正弦曲线的半个周期(一个在正半、另一个在负半周期)导通。若没有输入讯号,则输出元件没有电流流过。在最大输出功率,B类放大器的效率最高,为78.5%。但一个输出元件关闭和另一个输出元件导通间的间隔会在交叉点产生线性问题。

  AB类放大器是上述两种类型的组合。两个元件在靠近交叉点(尽管很接近)处同时导通。每个元件的导通时间长於半个但短於一个周期,克服了B类放大器设计非线性问题。AB类放大器效率约为50%。它是最常用的一种功率放大器

  D类音频放大器是开关和脉宽调变(PWM)放大器。因开关不是全开就是全关,所以大幅降低了输出元件上的损耗。据说其效率可达90~95%。利用音频讯号调变可驱动输出元件的PWM载波讯号。但因D类音频放大器是开关型,所以它会产生开关杂讯。其最末级是一个滤除高频PWM载频的低通滤波器

  2 D类和AB类放大器比较

  AB类放大器是目前汽车音响应用中的标准。该技术非常成熟,所以,采用其开发产品相对较容易,且不 需要调整和重头再来。多家IC制造商间的激烈竞争也使AB类放大器价格趋於合理。由於AB类放大器只需外接几个元件,进一步降低了原材料成本。另外,当与 最初的D类音频放大器相较时,AB类放大器具有不产生电磁干扰(EMI)的优势。

  AB类放大器的缺点包括相对较高的功耗,以及由50%工作效率引起的发热,但仅在音响系统变得更复 杂时,这些缺点才会成为严重问题。不过,在车前单元的应用中,AB类放大器又引发了一个新问题:源於不断增加的功耗,当电源电压高於18V时,无法用AB 类放大器产生更高输出功率。

  除了90%的工作效率外,D类音频放大器还可透过与处理音频之数位讯号处理器(DSP)的互连来进 行设计,此举节省了在DSP内整合一个类比/数位转换器的成本(AB类放大器有一个基本的类比连接;但将D类音频放大器称为‘数位’放大并不恰当。)最 後,D类音频放大器可整合到60V的电源线路之中。

  3 六声道设计范例

  目前,许多量产型汽车具有4声道及8个喇叭。另外,放大器必须能支援整个音频谱域,且低音和中音(mid-tone)喇叭通常共用同一声道和放大器。对这种4声道配置的一味迁就将可能在车门产生共振(见图2)。

4声道与6声道音响架构比较

  图2 4声道与6声道音响架构比较

  增加两个声道将解决几个问题。首先,它允许用两个新增声道独立地驱动大功率的低音喇叭,以排除车门共振。另外,由於全部喇叭都不必工作在整个频率范围,还有可能实现高传真音质。

  但如同每位汽车音响设计师所说的,空间和发热的限制使车前单元功耗不得高於20W。规避该问题的传统作法是用安置在车身上的外接放大器单元驱动某些喇叭。该方案虽然可行,但也增加了整体系统复杂性和成本。

  明智地使用D类音频放大器为解决该问题提供了一个具成本效益的答案。依正常放大器值计算,一款效率55%的AB类放大器功耗是4.5 W,而一款效率94%的D类音频放大器功耗是0.6 W。

  采用6个AB类放大器声道将总共产生27W功耗,比车前单元一般认为可承受的功耗高7W(见图3, 情况A)。但若将AB和D类音频放大器整合在一起,则即使仅采用两个D类音频放大器(最可能用於低音喇叭驱动),也将满足功耗预算。图3的最下行显示了 20W与该特定配置的整体功耗区别。

两个D类音频放大器

  图3 仅使用两个D类音频放大器,就可使一个6声道系统具有理想的性价比,适用於车前单元

  D类音频放大器的成本大概会使情况B最可能成为中阶车款的选择。但着眼未来,特别是‘优质音响系统’市场(更高电源等级)的情况,D类音频放大器有可能扩大其市场占有率。

  高阶车音响系统可能最少支援8个声道、最多达22个声道,其中许多声道会放在车身单元。若不在系统中采用D类音频放大器,则支援多个声道可能几乎无法实现。

  在对成本和品质目标间不懈的权衡过程中,设计工程师会找到AB类和D类音频放大器的许多种组合。D 类音频放大器最初会在低功耗至关重要以及(有些意外)需要很高功率输出的应用中找到用武之地。这些应用包括功率大於90W的系统,其中立体声D类音频放大 器是最佳选择。但其应用可归类为4种系统:

  高阶:由AB和D类音频放大器联合驱动的8到22声道系统、每声道功率大於28W。

  对功耗进行最佳化设计的中阶音响系统:由纯D类音频放大器驱动的4到6声道系统、每声道功率大於25W。

  对成本进行最佳化设计的中阶音响系统:由AB和D类音频放大器联合驱动的4到6声道系统。

  基本音响系统:全由AB类放大器驱动的2到4声道系统、每声道功率小於28W。

  4 汽车应用的D类放大器

  汽车环境对D类音频放大器应用提出了挑战。为设计一款出众的产品,半导体供应商必须提供其知识、技巧及关於D类音频放大器和汽车应用的丰富经验。

  对启动器来说,由於汽车设计的需求,I2C控制已被纳入其中。此外,挑战也正变得益发困难。例 如,D类音频放大器的输出电压受电源电压的影响,且车内的电源电压是不稳定的。为抑制电源纹波电压,已采取了若干措施。抑制电压波动的最好方法是采用负反 馈环。一个二阶反馈环可提供优异的纹波抑制。

  由开关导致的EMI是D类音频放大器最严重的问题之一,且非常难以解决。在设计层面,可透过相位混合(phase staggering)、跳频和AD/BD调变来减轻EMI。

  提高EMI的突波电流是由放大器开关时在其内部电晶体间导入的死区时间产生的。在死区时间,电流在体二极体上积聚,且该电荷作为电流突波被泄放(图4所示,红线指示该突波)。

死区时间导入的电流突波产生EMI

  图4 死区时间导入的电流突波产生EMI

  消除死区时间是个明显的解决方案。为达到此目标,恩智浦诉诸了其半导体制造专长。由於绝缘层上覆矽(SOI)的全部元件被氧化物绝缘,所以SOI是理想技术。当输出电压低於地电压时,元件基层没有电荷积聚,缩短了反向恢复时间,且与其他声道之间没有串扰。

  5 小结

  D类音频放大器将在汽车音响应用中扩大其市场占有率。到2015年,它将占汽车放大器市场的30%。随着D类音频放大器进入汽车应用,NXP不仅将与该趋势齐头并进,还将引领该潮流的走向。

  D类放大器是一种将输入模拟音频信号或PCM数字信息变换成PWM或PDM的脉冲信号,然后用PWM的脉冲信号去控制大功率开关器件通/断音频功率放大器。本文主要介绍了其设计方法。

  本文引用地址:http://www.eepw.com.cn/article/280104.htm

  1 系统设计

  1.1 总体设计分析

  本系统由高效率功率放大器(D类音频功率放大器)、信号变换电路、外接测试仪表组成,系统框图如图1所示。

系统方框图

  图1 系统方框图

  1.2 D类功放的设计

  D类放大器的架构有对称与非对称两大类,在此讨论的D类功放针对的是对功率、体积都非常敏感的便携式应用,因此采用全电桥的对称型放大器,以充分利用其单一电源、系统小型化的特点。D类功率放大器由PWM电路、开关功放电路及输出滤波器组成,原理框图如图2所示。

D类音频功率放大器组成框

  图2D类音频功率放大器组成框图

  采用了由比较器和三角波发生器组成的固定频率的PWM电路,用输入的音频信号幅度对三角波进行调制,得到占空比随音频输入信号幅度变化的方波,并以相反的相位驱动上下桥臂的功率管,使功率管一个导通时另一个截止,再经输出滤波器将方波转变为音频信号,推动扬声器发声。采用全桥的D类放大器可以实现平衡输出,易于改善放大器的输出滤波特性,并可减少干扰。全桥电路负载上的电压峰峰值接近电源电压的2倍,可采用单电源供电。实现时,通常采取2路输出脉冲相位相反的方法。

  2 硬件电路设计

  2.1 原理分析

  D类功率放大器的工作过程是:当输入模拟音频信号时,模拟音频信号经过PWM调制器变成与其幅度相对应脉宽的高频率PWM脉冲信号,控制开关单元的开/关,经脉冲推动器驱动脉冲功率放大器工作,然后经过功率低通滤波器带动扬声器工作。

  2.2 比较器

  比较器电路采用低功耗、单电源工作的双路比较器芯片LM311构成。此处为提高系统效率,减少后级H桥中CMOS管不必要的开合,用两路偏置不同的三角波分别与音频信号的上半部和下半部进行比较,当正端上的电位高于负端的电位时,比较器输出为高电平,反之则输出低电平。这样产生两路相互对应的PWM波信号给后级驱动电路进行处理,双路比较电路如图3所示。

比较器电路

  图3 比较器电路

  此处值得注意的是将上半部比较处理为音频信号接比较器的负向端、三角波信号接正向端;下半部比较则相反,这样形成相互对应,在音频信号的半部形成相应PWM波时,另半部为低电平,可保征后级H桥中的CMOS管没有不必要的开合,以减少系统功率损耗。电路以音频信号为调制波,频率为70kHz的三角波为载波,两路信号均加上2.5V的直流偏置电压,通过比较器进行比较,得到幅值相同,占空比随音频幅度变化的脉冲信号。

  LM311芯片的供电电压为5V单电源,为给V+=V-提供2.5V的静态电位,取R10=R11,R8=R9,4个电阻均取10kΩ。由于三角波Vp-p=2V,所以要求音频信号的Vp-p不能大于2V,否则会使功放产生失真。由于比较器芯片LM311的输出级是集电极开路结构,输出端须加上拉电阻,上拉电阻的阻值采用1kΩ的电阻。

  2.3 驱动电路以及互补对称输出和低通滤波电路

  如图4所示。将PWM信号整形变换成互补对称的输出驱动信号,用CD40106施密特触发器并联运用以获得较大的电流输出,送给由晶体三极管组成的互补对称式射极跟随器驱动的输出管,保证了快速驱动。驱动电路晶体三极管选用9012和9014对管。

  H桥互补对称输出电路对VMOSFET的要求是导通电阻小,开关速度快,开启电压小。因输出功率稍大于1W,属小功率输出,可选用功率相对较小、输入电容较小、容易快速驱动的对管,IRF9630和IRFZ48NVMOS对管的参数能够满足上述要求,故采用之。实际电路如图4所示。本设计采用4阶Butterworth低通滤波器。

4H桥互补对称输出及低通滤波电路

  图4H桥互补对称输出及低通滤波电路

  对滤波器的要求是上限频率≥20kHz,在通频带内特性基本平坦。互补PWM开关驱动信号交替开启Q6和Q8或Q12和Q10,分别经两个4阶巴特沃兹滤波器滤波后推动喇叭工作。

  3电路测试

  3.1 调试步骤

  1)通频带的测量:在放大器电压放大倍数为10,实测3dB通带的上、下边界频率值。通频带测试时应去掉测试用的RC滤波器。

  2)最大不失真输出功率:放大倍数为10,输入1kHz正弦信号,用毫伏表测量放大器输出电压有效值,计算最大输出功率Po-max。3)输入阻抗:在输入回路中串入10kΩ电阻,放大器输入端电压下降应小于50%。

  4)效率测量:输入1kHz正弦波,放大倍数为10时,使输出功率达到500mW,测量功率放大器的电源电流I(不包括测试用变换电路和显示部分的电流)。要求电源电压V的范围为5×(1+1%)V。效率为:500mW%V×I。

  3.2 数据分析

  根据以上的调试步骤测量,测得数据如表1、表2、表3、图5、图6所示。

电路测试
误差放大

  图5 误差放大(动态)

最大不失真功率测试数据

  图6最大不失真功率测试数据

  图5展示了当输入信号的幅值不变,仅改变其频率,动态放大误差效果图。由图可知,对于频带以外的信号,系统的放大倍数与输出幅值有明显降低。对于当信号频率的升高导致EMI(电磁干扰)增强,可以利用低通滤波器降低干扰。

  功率放大器采用5V电源,前置放大器的放大倍数调到最大,适当的调节输入信号的幅值,改变其频率,测量其最大不失真输出功率及效率见图6。对于频带以外的信号,功率放大器的最大不失真功率有明显的降低。若要提高效率,可以降低载波频率,但输出电压的谐波成分及失真增加;若要使输出电压非线性失真减少,则需提高PWM调制信号的频率。尽管高频干扰是D类功率放大器现今存在的主要问题,但其高效节能的优点,以越来越多的受到了人们的重视。

  从上面的数据可知,功放的效率和最大不失真输出功率与理论值还有一些差距,其原因有以下几方面:

  1)在功放电路存在静态损耗。电路在静态下是具有一定的功耗,测试其5V电源的静态总电流约为28mA,静态功耗为:P损耗=5×28=140mW,则这部分的损耗对总的效率影响很大,且对小功率输出时影响更大。

  2)功放输出电路的损耗,这部分的损耗对效率和最大不失真输出功率均有影响。H桥的互补激励脉冲达不到理想同步,也会产生功率损耗。

  3)滤波器的功率损耗,这部分损耗主要是由电感的直流电阻引起的,功率测量电路的误差。此外,还有测量仪器本身带来的测量误差。


责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: 放大器

相关资讯