0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >行业趋势 > 基于晶闸管整流器全关断检测电路的设计与晶闸管强触发脉冲系统的抗干扰措施

基于晶闸管整流器全关断检测电路的设计与晶闸管强触发脉冲系统的抗干扰措施

2017-07-04
类别:行业趋势
eye 153
文章创建人 拍明
      本文提出并介绍了欧姆逻辑无环流检测的一种方案--晶闸管整流器全关断检测,并与软件检测和电流互感器检测进行比较分析,最终得出晶闸管全关断检测方案准确可行的结论。全关断的输出信号与上述两种信号进行综合利用,从而准确可靠地实现了欧姆的逻辑无环流控制。

1 引言

中国环流器2A(HL—2A)是中国第一个具有偏滤器位形的大型受控核聚变研究装置,其主机由德国ASDEX装置主机主要部件经适当改造而成,其磁场线圈所需的供电系统及其它的配套系统则完全由我院自行研制。

欧姆线圈(OH)HL—2A中的作用是击穿气体、建立、维持并加热等离子体电流,因而为其供电的欧姆电源在装置实验中起着非常重要的作用。欧姆电源如图1所示,有正负各两组共计四组电源。

欧姆电源示意图.jpg

1 欧姆电源示意图

其中1号和3号整流柜为正组,2号和4号整流柜为负组,正组输出电压1600V,负组800V,两组的输出电流都是30kA

随着实验的深入,实验需求参数的不断提高,就要求实现欧姆电源正负组的无环流运行。欧姆电源的逻辑无环流运行可分为以下几个阶段,正组整流阶段为欧姆线圈充磁,开始放电时正组整流器快速进入逆变段,将气体击穿、维持等离子体电流上升,在正组电流过零后将正组封锁,紧接着负组以整流状态投入工作,继续推动等离子体电流上升并维持平顶,平顶结束后负组以逆变方式控制等离子体电流下降,电流过零后封锁负组,完成一次放电。对实验来讲,要实现逻辑无环流并确保装置的安全,最关键的技术就是欧姆电流的过零检测。

为了检测欧姆的过零情况,可靠地实现逻辑无环流控制,对比实际情况,我们开发研制了晶闸管全关断检测电路板。

2 几种关断检测方法的比较

要实现逻辑无环流的准确稳定运行,最关键的是如何准确判断正组整流器的全关断时刻。因为如果判断关断提前,而实际上正组整流器还没有全关断,这时按设定的逻辑程序就把负组整流器开通,正组整流器和负组整流器之间就会形成大环流,则对电源设备的安全构成严重危害;如果判断关断延后,正组整流器和负组整流器之间切换的死区时间过长,则影响装置放电以至放电失败。

全关断检测对电源系统安全和装置放电的稳定有着重要的影响。通常采用检测整流器的直流输出电流是否过零来判断其是否关断,习惯上就叫做过零检测,下面是对几种检测方法的分析和比较。

2.1 软件过零检测方法

采用直流传感器的信号,经过采集板卡送入计算机,预先设置一个比较值,通过程序来比较,在检测到电流值小于这个值的时候,则认为过零,由于大电流传感器测量精度的局限性和现场干扰严重,容易造成误判,而且过零检测程序与复杂的装置放电控制程序编在一起,只检测第一次过零,在电流出现波动时,它不能判断再过零,如图2所示。

2 软件检测过零时电流出现波动时过零判断示意图

其中Utk2-OH为软件检测过零信号,I-OH为欧姆电源电流,因为互感器测量方向接反,所以欧姆电流显示为负(下同)。当过零信号反转时,实际上还有一定电流,整流器并没有真正关断,且处于续流状态。如果放电正常,通过软件延时适当时间,可以控制在正组整流器真正关断时再开通负组整流器,其转换死区时间的长短取决于传感器的测量精度和程序速度。但如果放电不正常,正好在过零信号反转,软件延时时,等离子体电流破裂,其能量耦合到欧姆原边,正组电流增加,续流时间增长,软件又只检测出一个过零点,如果在软件延时(固定值)结束后开通负组整流器,此时正组整流器还在续流,将产生环流。

采用直流传感器的信号,经过采集板卡送入计算机,预先设置一个比较值,通过程序来比较,在检测到电流值小于这个值的时候,则认为过零,由于大电流传感器测量精度的局限性和现场干扰严重,容易造成误判,而且过零检测程序与复杂的装置放电控制程序编在一起,只检测第一次过零,在电流出现波动时,它不能判断再过零,如图2所示。其中Utk2-OH为软件检测过零信号,I-OH为欧姆电源电流,因为互感器测量方向接反,所以欧姆电流显示为负(下同)

当过零信号反转时,实际上还有一定电流,整流器并没有真正关断,且处于续流状态。如果放电正常,通过软件延时适当时间,可以控制在正组整流器真正关断时再开通负组整流器,其转换死区时间的长短取决于传感器的测量精度和程序速度。但如果放电不正常,正好在过零信号反转,软件延时时,等离子体电流破裂,其能量耦合到欧姆原边,正组电流增加,续流时间增长,软件又只检测出一个过零点,如果在软件延时(固定值)结束后开通负组整流器,此时正组整流器还在续流,将产生环流。

晶闸管脉冲触发系统在电力、电子等工业领域(如整流、有源逆变、交流调压、变频器及斩波器等方面)有着极其广泛的应用。而脉冲触发系统在现场实际应用中能否正常可靠运行,很大程度上决定于该系统对现场各种干扰的抗干扰能力。因为大多数干扰表现为瞬时尖峰信号的形式,即所谓毛刺,当其幅值和能量达到一定程度时,就极易导致晶闸管误导通,造成晶闸管损坏等严重后果,使系统不能正常运行。尤其在现场环境比较恶劣、而脉冲本身又为强触发脉冲的情况下,因为外界对脉冲系统及脉冲相互间的干扰均较大,系统的抗干扰能力更成为关键之一。该情况下系统的抗干扰能力强弱也正能衡量出一种抗干扰措施实际效果的好坏。如直流炼钢电弧炉晶闸管整流装置的强触发脉冲系统即属于此类。直流炉额定弧流为数千至数万安,弧压为数百伏,且直流侧短路是其正常工况,这种工况在熔化期

频繁发生,在移相控制过程中,产生较强的谐波电流,在弧流通过的路径如整流装置、短网、直流炉体周围空间产生强大的剧变电磁场,成为置于其中的脉冲系统的一个较强的干扰源。另外,由于整流装置容量较大,需多只晶闸管并联运行,故采取强触发脉冲以保证并联晶闸管导通的一致性、可靠性,因而脉冲瞬时功率较大,使脉冲相互间干扰也增大。在此,笔者根据多年设计及现场实践经验,针对恶劣环境下晶闸管强触发脉冲系统介绍几种有效而又成本低廉的抗干扰措施。

2.干扰类型

脉冲系统的干扰主要有两类。一类是脉冲系统内的相互干扰。另一类是外部干扰源对脉冲系统的干扰。

2.1 脉冲系统内的相互干扰

这类干扰主要由共用的电源和地引起,主要表现为一路脉冲的尖峰干扰信号在对应于其他几路脉冲的时刻出现。这是因为各路脉冲共用一组电源,在一路脉冲触发时,由于瞬时功率较大,将电源波形拉下缺口。同时,在地线上产生较强的脉冲电流,该电流流经地线上两点间将产生干扰毛刺。若接地没处理好,该干扰毛刺将通过地线传至其他路脉冲信号上。这类干扰的另一原因是印刷电路板上或线槽内两条平行的信号线的线间分布电容的电容耦合。

2.2 外部干扰源对脉冲系统的干扰

外部干扰源主要包括两类。一是设备内部信号,如脉冲控制柜内其他的强电信号等。二是外部环境,如大电弧电流产生的剧变强电磁场、强大的交变电磁场、大功率整流电路的移相控制产生的谐波、断路器合分过程中产生的过压等。这些干扰主要通过通道传输和电磁耦合等方式干扰脉冲系统。

3.抗干扰措施

3.1 抑制脉冲间相互干扰的措施

因为这类干扰主要由共用电源和地引起,故应有针对性地采取以下措施:

(1)将控制电源和脉冲电源分开,并将各路脉冲电源分开,以减少或消除脉冲间的相互干扰。如有六路脉冲输出,就可采用六组脉冲电源。另外,各电源应采用大容量电容进行滤波,并尽量提高电源输出特性的硬度。

(2)地线要处理好。这包括两点:一是要遵循一点接地原则;二是接地电阻应尽量小。在脉冲电路的实际工程调试中,相当大的工作量往往都花在消除干扰毛刺上,而这大多是地线没有处理好造成的。因此,这一条很重要。所谓一点接地原则,就是指各路脉冲的地应接在一点,以便各脉冲的地电位尽量一致。这里的既指电路上的一点,也指物理上的一点。接地电阻小就是说一地线应尽量短;二地线还应尽量粗。这样,才能在强触发情况下,脉冲触发电流较大时使地线上两点间的电位差尽量小,减少或消除毛刺。图1和图2分别示出合理及不合理的地线接线方法(以六路脉冲为例)

3.2 抑制外部干扰源对脉冲干扰的措施

3.2.1 抑制设备内部信号对脉冲干扰的措施

(1)印制电路板采用铺地方法,即印制电路板上全部或局部铺上地线,用地线将信号线包围起来,以抑制设备内部信号对脉冲信号的干扰。

(2)脉冲信号线应尽量短。

(3)脉冲信号采用绞距小于1cm的双绞线或屏蔽线。因为双绞线内流过的电流瞬时大小相等,方向相反,故脉冲信号产生的干扰磁场只在双绞线间极小的间隙内迭加,而在双绞线外广大的区域相互抵消。同样,设备内部信号产生的干扰磁场在双绞线内产生的干扰信号也是大小相等,方向相反,故相互抵消。因此,采用双绞线是一种有效而廉价的抗干扰措施。

(4)强、弱电垂直交叉或分开布线。分开布线即增大强、弱电信号线间的物理距离,可有效衰减其相互干扰程度。若设备内部无足够空间,可使强、弱电信号线垂直交叉,减小其相互干扰。

3.2.2 抑制外部环境对脉冲干扰的措施

(1)脉冲信号线与外部环境干扰源保持尽可能大的物理距离。

(2)脉冲采用双绞线或屏蔽电缆。

(3)脉冲线单独穿管,与其他信号线分开布线。管道应可靠接地,并保证整个长度上连续接地。(采用对磁电衰减较好的材料做的管道,如2inch电镀钢管或电气金属管等)

(4)尽量减少或不设中间端子板或连接点。

(5)根据具体情况,也可对脉冲系统专做一屏蔽盒,既严密屏蔽又便于调试、维修。(如抽屉式)

4.结束语

上述一些抗干扰措施在笔者多年的现场工程调试中被证明是实用的、行之有效的。典型的一个应用是在为某直流炼钢电弧炉配套的40KA/650V整流装置的现场调试中。由于整流装置容量较大,干扰很大。现场调试中发现,为避免涡流发热而采用的不导磁的不锈钢管(纯水冷却装置用)及角铝(整流装置框架)在整流装置通电运行后居然出现了磁化现象(角铝是在弯角处出现),晶闸管的触发脉冲上也迭加了严重的干扰毛刺,刚开始试运行时,时常有晶闸管因误触发而损坏。后来,采取上述措施进行整改后,将脉冲的干扰毛刺抑制到很小的程度,整流装置投入正常运行。相信这些措施对广大电气、电力电子领域的设计及工程技术人员会有所帮助。

 


责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: 晶闸管整流器

相关资讯