0 卖盘信息
BOM询价
您现在的位置: 首页 > 技术方案 >工业控制 > 基于STM32F103C8T6+DS18B20+LCD1602的温度检测控制系统设计方案

基于STM32F103C8T6+DS18B20+LCD1602的温度检测控制系统设计方案

来源:
2020-04-23
类别:工业控制
eye 1058
文章创建人 拍明

原标题:【毕设作品】基于STM32的温度检测控制系统完整资料

  采用DS18B20检测温度,STM32F103C8T6作为主控制器,继电器控制风扇和加热器,采用LCD1602实时显示。


image.png

  包含如下资料:

  

image.png

  原件清单如下:

  

image.png


【STM32F103C8T6】

  Mainstream Performance line, ARM Cortex-M3 MCU with 64 Kbytes Flash, 72 MHz CPU, motor control, USB and CAN

  The STM32F103xx medium-density performance line family incorporates the high-performance ARM®Cortex®-M3 32-bit RISC core operating at a 72 MHz frequency, high-speed embedded memories (Flash memory up to 128 Kbytes and SRAM up to 20 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer two 12-bit ADCs, three general purpose 16-bit timers plus one PWM timer, as well as standard and advanced communication interfaces: up to two I2Cs and SPIs, three USARTs, an USB and a CAN.

  The devices operate from a 2.0 to 3.6 V power supply. They are available in both the –40 to +85 °C temperature range and the –40 to +105 °C extended temperature range. A comprehensive set of power-saving mode allows the design of low-power applications.

  The STM32F103xx medium-density performance line family includes devices in six different package types: from 36 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

  These features make the STM32F103xx medium-density performance line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.

  KEY FEATURES

  ARM®32-bit Cortex®-M3 CPU Core

  72 MHz maximum frequency,1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access

  Single-cycle multiplication and hardware division

  Memories

  64 or 128 Kbytes of Flash memory

  20 Kbytes of SRAM

  Clock, reset and supply management

  2.0 to 3.6 V application supply and I/Os

  POR, PDR, and programmable voltage detector (PVD)

  4-to-16 MHz crystal oscillator

  Internal 8 MHz factory-trimmed RC

  Internal 40 kHz RC

  PLL for CPU clock

  32 kHz oscillator for RTC with calibration

  Low-power

  Sleep, Stop and Standby modes

  VBAT supply for RTC and backup registers

  2 x 12-bit, 1 μs A/D converters (up to 16 channels)

  Conversion range: 0 to 3.6 V

  Dual-sample and hold capability

  Temperature sensor

  DMA

  7-channel DMA controller

  Peripherals supported: timers, ADC, SPIs, I2Cs and USARTs

  Up to 80 fast I/O ports

  26/37/51/80 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant

  Debug mode

  Serial wire debug (SWD) & JTAG interfaces

  7 timers

  Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input

  16-bit, motor control PWM timer with dead-time generation and emergency stop

  2 watchdog timers (Independent and Window)

  SysTick timer 24-bit downcounter

  Up to 9 communication interfaces

  Up to 2 x I2C interfaces (SMBus/PMBus)

  Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control)

  Up to 2 SPIs (18 Mbit/s)

  CAN interface (2.0B Active)

  USB 2.0 full-speed interface

  CRC calculation unit, 96-bit unique ID

  Packages are ECOPACK®

  Circuit Diagram

STM32F103C8T6.png

  DS18B20

  DS18B20是常用的数字温度传感器,其输出的是数字信号,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。 DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

  工作原理

  DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

  

  技术性能编辑

  1、技术性能描述:

  ①、 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

  ② 、测温范围 -55℃~+125℃,固有测温误差(注意,不是分辨率,这里之前

  是错误的)1℃。

  ③、支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。

  ④、工作电源: 3.0~5.5V/DC (可以数据线寄生电源)

  ⑤ 、在使用中不需要任何外围元件

  ⑥、 测量结果以9~12位数字量方式串行传送

  ⑦ 、不锈钢保护管直径 Φ6

  ⑧ 、适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温

  ⑨、 标准安装螺纹 M10X1, M12X1.5, G1/2”任选

  ⑩ 、PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。

  DS18B20+ 和 Maxim Integrated 信息 [1]

  Manufactured by Maxim Integrated, DS18B20+ is a 温度传感器.

  应用范围编辑

  该产品适用于冷冻库,粮仓,储罐,电讯机房,电力机房,电缆线槽等测温和控制领域。

  轴瓦,缸体,纺机,空调,等狭小空间工业设备测温和控制。

  汽车空调、冰箱、冷柜、以及中低温干燥箱等。

  供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制。

  型号规格编辑

  型 号 测温范围 安装螺纹 电缆长度 适用管道

  TS-18B20 -55~125 无 1.5 m

  TS-18B20A -55~125 M10X1 1.5m DN15~25

  TS-18B20B -55~125 1/2”G 接线盒 DN40~ 60

  接线说明编辑

  接线方法

  面对着平的那一面,左负右正,一旦接反就会立刻发热,有可能烧毁!同时,接反也是导致该传感器总是显示85℃的原因。实际操作中将正负反接,传感器立即发热,液晶屏不能显示读数,正负接好后显示85℃。另外,如果使用51单片机的话,那么中间那个引脚必须接上4.7K—10K的上拉电阻,否则,由于高电平不能正常输入/输出,要么通电后立即显示85℃,要么用几个月后温度在85℃与正常值上乱跳。

  特点

  独特的一线接口,只需要一条口线通信 多点能力,简化了分布式温度传感应用 无需外部元件 可用数据总线供电,电压范围为3.0 V至5.5 V 无需备用电源 测量温度范围为-55 ° C至+125 ℃ 。华氏相当于是-67 ° F到257° F。在摄氏度-10 ° C至+85 ° C范围内精度为±0.5 ° C

  温度传感器可编程的分辨率为9~12位,温度转换为12位数字格式最大值为750毫秒,用户可定义的非易失性温度报警设置,应用范围包括恒温控制、工业系统、消费电子产品温度计、或任何热敏感系统

  描述该DS18B20的数字温度计提供9至12位(可编程设备温度读数)。由于DS18B20是一条口线通信,所以中央微处理器与DS18B20只有一个一条口线连接。为读写以及温度转换可以从数据线本身获得能量,不需要外接电源。 因为每一个DS18B20的包含一个独特的序号,多个ds18b20s可以同时存在于一条总线。这使得温度传感器放置在许多不同的地方。它的用途很多,包括空调环境控制,感测建筑物内温设备或机器,并进行过程监测和控制。

  DS18B20采用一线通信接口。因为一线通信接口,必须在先完成ROM设定,否则记忆和控制功能将无法使用。主要首先提供以下功能命令之一: 1 )读ROM, 2 )ROM匹配, 3 )搜索ROM, 4 )跳过ROM, 5 )报警检查。这些指令操作作用在没有一个器件的64位光刻ROM序列号,可以在挂在一线上多个器件选定某一个器件,同时,总线也可以知道总线上挂有有多少,什么样的设备。

  若指令成功地使DS18B20完成温度测量,数据存储在DS18B20的存储器。一个控制功能指挥指示DS18B20的演出测温。测量结果将被放置在DS18B20内存中,并可以让阅读发出记忆功能的指挥,阅读内容的片上存储器。温度报警触发器TH和TL都有一字节EEPROM 的数据。如果DS18B20不使用报警检查指令,这些寄存器可作为一般的用户记忆用途。在片上还载有配置字节以理想的解决温度数字转换。写TH,TL指令以及配置字节利用一个记忆功能的指令完成。通过缓存器读寄存器。所有数据的读,写都是从最低位开始。

  部件描述

  存储器

  DS18B20的存储器包括高速暂存器RAM和可电擦除RAM,可电擦除RAM又包括温度触发器TH和TL,以及一个配置寄存器。存储器能完整的确定一线端口的通讯,数字开始用写寄存器的命令写进寄存器,接着也可以用读寄存器的命令来确认这些数字。当确认以后就可以用复制寄存器的命令来将这些数字转移到可电擦除RAM中。当修改过寄存器中的数时,这个过程能确保数字的完整性。

  高速暂存器RAM是由8个字节的存储器组成;。用读寄存器的命令能读出第九个字节,这个字节是对前面的八个字节进行校验。。

  64-位光刻ROM

  64位光刻ROM的前8位是DS18B20的自身代码,接下来的48位为连续的数字代码,最后的8位是对前56位的CRC校验。64-位的光刻ROM又包括5个ROM的功能命令:读ROM,匹配ROM,跳跃ROM,查找ROM和报警查找。

  外部电源的连接

  DS18B20可以使用外部电源VDD,也可以使用内部的寄生电源。当VDD端口接3.0V—5.5V的电压时是使用外部电源;当VDD端口接地时使用了内部的寄生电源。无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。

  配置寄存器

  配置寄存器是配置不同的位数来确定温度和数字的转化。

  可以知道R1,R0是温度的决定位,由R1,R0的不同组合可以配置为9位,10位,11位,12位的温度显示。这样就可以知道不同的温度转化位所对应的转化时间,四种配置的分辨率分别为0.5℃,0.25℃,0.125℃和0.0625℃,出厂时以配置为12位。

  温度的读取

  DS18B20在出厂时以配置为12位,读取温度时共读取16位,前5个位为符号位,当前5位为1时,读取的温度为负数;当前5位为0时,读取的温度为正数。温度为正时读取方法为:将16进制数转换成10进制即可。温度为负时读取方法为:将16进制取反后加1,再转换成10进制即可。例:0550H = +85 度,FC90H = -55 度。

  控制方法编辑

  DS18B20有六条控制命令,如表4.1所示:

  表4.1 为DS18B20有六条控制命令

  指 令 约定代码 操 作 说 明

  温度转换 44H 启动DS18B20进行温度转换

  读暂存器 BEH 读暂存器9字节二进制数字

  写暂存器 4EH 将数据写入暂存器的TH、TL字节

  复制暂存器 48H 把暂存器的TH、TL字节写到E2PROM中

  重新调E2PROM B8H 把E2PROM中的TH、TL字节写到暂存器TH、TL字节

  读电源供电方式 B4H 启动DS18B20发送电源供电方式的信号给主CPU

  初始化

  (1) 先将数据线置高电平“1”。

  (2) 延时(该时间要求的不是很严格,但是尽可能的短一点)

  (3) 数据线拉到低电平“0”。

  (4) 延时750微秒(该时间的时间范围可以从480到960微秒)。

  (5) 数据线拉到高电平“1”。

  (6) 延时等待(如果初始化成功则在15到60微秒时间之内产生一个由DS18B20所返回的低电平“0”。据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。

  (7) 若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。

  (8) 将数据线再次拉高到高电平“1”后结束。

  写操作

  (1) 数据线先置低电平“0”。

  (2) 延时确定的时间为15微秒。

  (3) 按从低位到高位的顺序发送字节(一次只发送一位)。

  (4) 延时时间为45微秒。

  (5) 将数据线拉到高电平。

  (6) 重复上(1)到(6)的操作直到所有的字节全部发送完为止。

  (7) 最后将数据线拉高。

  DS18B20的写操作时序图如图4.14所示。

  图4.14 DS18B20的写操作时序图

  读操作

  (1)将数据线拉高“1”。

  (2)延时2微秒。

  (3)将数据线拉低“0”。

  (4)延时3微秒。

  (5)将数据线拉高“1”。

  (6)延时5微秒。

  (7)读数据线的状态得到1个状态位,并进行数据处理。

  (8)延时60微秒。

  主要特征

  1、DS18B20的主要特性

  1.1、适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数 据线供电

  1.2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

  1.3、 DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温

  1.4、DS18B20在使用中不需要任何外围元件,全部 传感元件及转换电路集成在形如一只三极管的集成电路内

  1.5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃

  1.6、可编程 的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温

  1.7、在9位分辨率时最多在 93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快

  1.8、测量结果直接输出数字温度信号,以"一 线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力

  1.9、负压特性:电源极性接反时,芯片不会因发热而烧毁, 但不能正常工作。

  2、DS18B20的外形和内部结构

  DS18B20内部结构主要由四部分组成:64位光刻ROM 、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

  DS18B20的外形及管脚排列如下图1:

  DS18B20引脚定义:

  (1)DQ为数字信号输入/输出端;

  (2)GND为电源地;

  (3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

  3、DS18B20工作原理

  DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。高温度系数晶振 随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对 低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重 新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即 为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

  DS18B20有4个主要的数据部件:

  (1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位 (28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用 是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

  (2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以 0.0625℃/LSB形式表达,其中S为符号位。

  表1: DS18B20温度值格式表

  这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0, 这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际 温度。 例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FE6FH,-55℃的数字输出为FC90H 。

  表2: DS18B20温度数据表

  (3)DS18B20温度传感器的存储器 DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器 TH、TL和结构寄存器。

  (4)配置寄存器 该字节各位的意义如下:

  低五位一直都是"1",TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用 户不要去改动。R1和R0用来设置分辨率,如下表所示:(DS18B20出厂时被设置为12位)

  4、高速暂存存储器高速暂存存储器由9个字节组成,其分配如表5所示。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在 高速暂存存储器的第0和第1个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式如表1所示。对应的温度计算: 当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变为原码,再计算十进制值。表 2是对应的一部分温度值。第九个字节是 冗余检验字节。



责任编辑:David

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯

方案推荐
基于MC33771主控芯片的新能源锂电池管理系统解决方案

基于MC33771主控芯片的新能源锂电池管理系统解决方案

AMIC110 32位Sitara ARM MCU开发方案

AMIC110 32位Sitara ARM MCU开发方案

基于AMIC110多协议可编程工业通信处理器的32位Sitara ARM MCU开发方案

基于AMIC110多协议可编程工业通信处理器的32位Sitara ARM MCU开发方案

基于展讯SC9820超低成本LTE芯片平台的儿童智能手表解决方案

基于展讯SC9820超低成本LTE芯片平台的儿童智能手表解决方案

基于TI公司的AM437x双照相机参考设计

基于TI公司的AM437x双照相机参考设计

基于MTK6580芯片的W2智能手表解决方案

基于MTK6580芯片的W2智能手表解决方案