0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >行业趋势 > 新型太阳能与单片机的太阳能手机充电器的研究方案与电路原理简介

新型太阳能与单片机的太阳能手机充电器的研究方案与电路原理简介

2017-06-16
类别:行业趋势
eye 483
文章创建人 拍明

       本文介绍一种太阳能手机充电器

三极管VT1开关电源管,它和T1R1R3C2等组成自激式振荡电路。加上输入电源后,电流经启动电阻R1流向VT1的基极,使VT1导通。

VT1导通后,变压器初级线圈Np就加上输入直流电压,其集电极电流IcNp中线性增长,反馈线圈Nb产生34负的感应电压,使VT1得到基极为正,发射极为负的正反馈电压,此电压经C2R3VT1注入基极电流使VT1的集电极电流进一步增大,正反馈产生雪崩过程,使VT1饱和导通。在VT1饱和导通期间,T1通过初级线圈Np储存磁能。

与此同时,感应电压给C2充电,随着C2充电电压的增高,VT1基极电位逐渐变低,当VT1的基极电流变化不能满足其继续饱和时,VT1 退出饱和区进入放大区。

VT1进入放大状态后,其集电极电流由放大状态前的最大值下降,在反馈线圈Nb产生34正的感应电压,使VT1基极电流减小,其集电极电流随之减小,正反馈再一次出现雪崩过程,VT1迅速截止。

VT1截止后,变压器T1储存的能量提供给负载,次级线圈Ns产生的56正的电压经二极管VD1整流滤波后,在C3上得到直流电压给手机电池充电。

VT1截止时,直流供电输人电压和Nb感应的34正的电压又经R1R3C2反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。

R5R6VD2VT2等组成限压电路,以保护电池不被过充电,这里以3.6V手机电池为例,其充电限制电压为4.2V。在电池的充电过程中,电池电压逐渐上升,当充电电压大于4.2V时,经R5R6分压后稳压二极管VD2开始导通,使VT2导通,VT2的分流作用减小了VT1的基极电流,从而减小了VT1的集电极电流Ic,达到了限制输出电压的作用。这时电路停止了对电池的大电流充电,用小电流将电池的电压维持在4.2V

元器件选择和安装调试

VT1要求Icm>0.5AhEF50-100,可用2SC25002SC1008等,VD1为稳压值为3V的稳压二极管。

高频变压器T1要自制,用E16的铁氧体磁芯,Npφ0.21漆包线绕26匝,Nbφ0.21漆包线绕8匝,Nsφ0.41漆包线绕15匝。绕制时要注意各线圈的起始端不要搞错,以免电路不起振或输出电压不正常。组装时在两块磁芯间垫一层厚度约为0.03mm的塑料薄膜作磁芯气隙。

太阳能电池板使用4块面积为6cm×6cm的硅太阳能电池板,其空载输出电压为4V,当工作电流为40mA时输出电压为3V。由于直流变换器的工作效率随着输入电压的的增高而增高,因此4块太阳能电池板串联后使用,这时电路的输入电压为12V。读者可根据你能购到的太阳能电池板规格决定使用的数量和联接方法。其它元件的。


太阳能手机充电器.jpg

印刷电路板,尺寸为45×26mm2

安装完成后,接上太阳能电池板,并将其放在阳光下,空载时电路输出电压约为4.2V,当空载输出电压高于4.2V时可适当减小R5的阻值,反之增加R5的阻值。电路工作电流跟太阳光的强弱有关,正常时约为40mA,这时充电电流约为85mA

最近,人们正考虑把太阳能用于包括移动电话充电器这样的范围更宽广的消费电子应用。太阳能电池板所提供的功率高度依赖于工作环境。这包括诸如光密度、时间和位置之类的因素。因此,电池通常被用作能量存储单元。当来自太阳能板的电能有余的时候,就可以对电池充电;当太阳能板提供的电能不足时,电池就可以为系统供电。

目前市场上的太阳能电池板繁多,根据太阳能电池板所用材料的不同可分为:

硅太阳能电池;

以无机盐如砷化镓III- V 化合物,硫化镉,铜铟硒等多元化合物为材料的太阳能电池;

功能高分子材料(有机半导体)制备的大阳能电池;

纳米晶太阳能电池等。我们采用的是硅太阳能电池。

2 充电器的硬件设计

充电器如图1 所示。主要包括电源变换电路、采样电路、处理器、脉宽调制控制器和电池组等,形成了一个闭环系统。

其中,单片机是电路的控制部分,PWM电路是整个电路的核心部分。下面对系统的工作原理分几个部分进行简述。

2.1 处理器

处理器采用51 系列单片机89C51。单片机内部有两个定时器、两个外部中断和一个串口中断、三个八路的I/O 口,采用12MHz 的晶振。单片机的任务是通过采样电路实时采集太阳能电池板的输出电压和电流以及电池的充电状态,通过计算决定如何对电池板最大输出功率进行寻找以及确定充电电池的充电状态。

2.2 采样部分

如果在系统中要对电流进行检测,必须先将电流信号转换为电压信号,然后才能实现A/D 的转换。常用的转换方法是在电路中加入精密电阻,由此将电流信号转换为电压信号。这种方法的优点是测量简单方便,但是这种方法当电流很小时,影响测量准确度,因而很难选择一个合适的阻值;其次,所得到的电流检测信号只有通过放大以后才能进入电路中的比较器,从而增加了电路设计调试时的复杂度。因此,可以采用电流电压转换芯片MAX472,克服了常规测量电流方法存在的测量范围小、测量误差大等缺点,可提高测量精度,并且可以用单片机进行精确控制。

电压和电流采样采用串行模/ 数转换器TLC08348 位分辨率易于和微处理器接口或独立使用满比例尺工作或用5V基准电压用地址逻辑多路器选通的4 8 输入通道单5V 供电,输入范围0- 5V

2.3 PWM 控制电路

控制器采用脉宽调制(PWM) 方式控制供电电流的大小。

PWM发生器是由的单片机输出的PWM波通过控制电路实现的,主控制器和它采用中断的方式进行通讯,控制其增大或减小脉宽。PWM信号通过光电隔离驱动主回路上的MOSFET

开关管、二极管、LC 电路构成开关稳压电源。用PWM方式控制的开关电源可以减小功耗,同时便于进行数字化控制,但母线的纹波系数相对较大。PWM控制电路如图2 所示。

3 电池充电原理

锂离子电池在充电或放电过程中若发生过充、过放或过流时,会造成电池的损坏或降低使用寿命,图3 为锂电池的充电曲线,共分三个阶段:预充状态、恒流充电和恒压充电阶段。

800mAh 容量的电池为例,其终止充电电压为4.2V。用1/10C(80mA)的电池进行恒流预充,当电池端电压达到低压门限V(min)后,以800mA(充电率为1C)恒流充电,开始时电池电压以较大的斜率升压,当电池电压接近4.2V 时,改成4.2V恒压充电,电流渐降,电压变化不大,到充电电流降为1/10C(80mA)时,认为接近充满,可以终止充电。

4 寻找太阳能最大输出功率点

在寻找最大功率点时,我们采用比较方式来实现,具体的做法是:首先采集太阳能电池板的输出电压和电流,计算出此时的功率,然后继续采集。如图4 所示。在图4 中,C 点与B 点比较,如比B 点大或相等时,就给一个正号权位;如比B 点小时,就给一个负号权位。而A 点如比B 点大或相等时,就给一个负号权位;A 点比B 点小时,就给一个正号权位。当三点比较完之后,如有两个正号权位则属正斜率,应当增大输出电压,提高输出功率;如有两个负号权位则属负斜率,应当减小输出电压,提高输出功率;如权位为零即为一正一负表示达到顶点,不做任何变动。在ABC 三点的功率值的取法为先取B点的功率为立足点,那么先读取C 点功率,再从C 点返回读取A 点功率。连续检测三点的功率值并比较其大小再计算出权位值,经由权位值来判定立足点要往C 点移动、A 点移动、或不移动。此种方法虽然运算时间比传统的扰动观察法较慢达到最大功率点以及在日照量快速变化下无法达到最大功率点,但可以降低传统扰动观察法中不明的干扰及判断错误而造成的功率损失,就整个控制效果而言是可以接受。

 三点权位比较法中最大功率点附近数据状态

5 程序总体设计及说明

我们采用的太阳能电池板的输出电压是9V,而充电电池的最高输入电压要求不能高于4.2V,为了保护电池起见,我们先把输出的电压从低到高逐渐增加。

产生PWM波:通过初始化定时器使定时器工作在方式1,其中定时器1GATE 端无效,定时器0GATE 端有效,在定时器1 的服务程序中使P1.0 1,并用该信号作为定时器0 的门控端。当P1.0 1 时,定时器0 开始计数,当计数溢出时,进入中断服务程序,在服务程序中将P1.0 清零,使定时器0 的定时周期小于定时器1 的定时周期,这样,固定定时器1 的周期,改变定时器0 的周期,就会产生不同占空比的方波。

该充电器使用闭环控制,控制精度高、具有自我调节能力,可以自动寻找太阳能电池板的最大输出功率点提高手机电池使用效率,延长使用寿命。

目前,在各种光伏电站中,普遍采用太阳电池来收集太阳能并将它储存于蓄电池中以便在需要时再逆变成220V/50Hz交流电供给用户使用。然而,在利用太阳电池对蓄电池充电的过程中,由于太阳电池输出特性的非线性,太阳电池工作点并不是时刻处于最大功率点附近,从而造成太阳电池能量的浪费。本课题所研制的新型太阳能充电器根据太阳电池的工作特性——输出最大功率点处的电压值在不同日照下基本不变,采用恒压跟踪(CVT)方式实现了对太阳电池的最大功率跟踪,有效地提高了太阳电池的工作效率,同时也改善了整个系统的工作性能。

2 系统主电路

系统的主电路

主电路拓扑结构为Buck型变换器,利用脉冲宽度控制芯片TL494的输出脉冲来控制主电路功率器件(IGBT)的占空比,以改变对蓄电池的充电电流,由此实现太阳电池的恒压跟踪,使太阳电池的输出功率接近最大功率。同时,通过主电路来完成对蓄电池电压、充电电流和太阳电池电压的采集,以便控制电路实现各种跟踪和保护功能。

3 太阳电池的工作特性

2为太阳电池的工作特性曲线图。由图可知,太阳电池的工作特性为一组非线性曲线,ABCDE点为不同日照下的最大输出功率点,并且对应输出最大功率点处的电压值在不同日照下基本不变,根据这一特点,采用恒压跟踪方式,利用简单的硬件电路基本上就可以实现太阳电池的输出功率为最大;同时,由图2又可知,当蓄电池过充时只要使太阳电池工作于开路状态就可以实现过充保护。

4 系统的控制原理

4.1 系统控制框图

本系统采用了经典控制理论中的双闭环控制方式,其中电流环为内环,电压环为外环,电压环的输出为电流环的给定;并且电压环又包含了由蓄电池电压构成的电路和太阳电池电压构成的电路,两个电路分别在电路工作的各个阶段起着相应的调节作用。

4.2 系统的工作过程分析

在充电阶段,蓄电池电压构成的电路不起作用,电压环仅由太阳电池电压构成的电路组成,此时,电压环的输出为电流环的给定,通过检测主电路中蓄电池的的充电电流和给定电流相比较来改变TL494的输出脉冲宽度,使太阳电池电压紧紧跟踪给定电压,具体表现为:当太阳电池电压大于给定电压时,偏差信号经过PI调节后改变给定电流使加到TL494的电流输入端信号变大,TL494输出脉冲宽度增加,经驱动电路放大整形以驱动功率器件,使其导通占空比增加,蓄电池充电电流变大,由图2可知,太阳电池电压下降,电路达到稳态时,太阳电池电压等于给定电压,电流环的给定亦为稳定值,蓄电池的的充电电流等于给定电流;反之,当太阳电池电压小于给定电压时,TL494输出脉冲宽度减小,经驱动电路放大整形以驱动功率器件,使其导通占空比减小,蓄电池充电电流变小,太阳电池工作电压增加,电路达到稳态时太阳电池电压等于给定电压。

在过充电阶段,两个电路均起作用,电压环由太阳电池电压构成的电路和蓄电池电压构成的电路组成,此时,蓄电池电压和给定太阳电池工作电压之和大于太阳电池实际工作电压,偏差信号经过PI调节后加到TL494的电流输入端,使TL494输出脉冲宽度减小,蓄电池充电电流变小,由图2可知,太阳电池实际工作电压渐渐增大,直到稳态时,太阳电池工作于开路状态,蓄电池充电电流为零,从而实现了过充保护。

5 脉冲宽度调制芯片TL494及其应用

5.1 脉冲宽度调制芯片TL494的结构

TL494是美国德州仪器公司的产品,其价格便宜,容易购得,并且在其内部同时解决了电流调节器、脉宽调制和最大电流限制,芯片内还设置了一些附加监控保护功能,使得芯片具有较强的抗干扰能力和较高的可靠性,用此芯片构成的控制系统外接元器件较少,结构简单。图4为该芯片的内部结构图。

由图4可知,TL494由一个振荡器、两个比较器、两个误差放大器、一个触发器、双与门和双或非门、一个+5V基准电压源、两个NPN输出晶体管等组成。脚6和脚5外接电阻RtCt确定了振荡器产生锯齿波的频率fosc

fosc=1/(RtCt)

输出调制脉冲的宽度是由电容Ct端的正向锯齿波和脚34输入的两个控制信号综合比较后确定的。脚13用来控制输出模式。脚4为死区时间控制端。脚1、脚16和脚2、脚15分别为两个误差放大器的同相和非同相输入端,可以分别接至给定信号和反馈信号,用作电压和电流调节器,完成系统的闭环控制,或者用作过流、过压、欠压和过热等比较器,实现保护功能。脚14为基准电压端,可为上述调节器和比较器提供参考基准。

6 结语

根据上述控制思想研制的充电器,具有过充、过流、过热等完善的保护功能;经过长期运行,系统显示出了良好的效果,不仅提高了太阳电池的工作效率,同时也保护了所使用的蓄电池,在利用绿色能源方面,具有较大的社会效益。

 




责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯