0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >基础知识 > PIC单片机有什么特点和优势

PIC单片机有什么特点和优势

2017-11-14
类别:基础知识
eye 281
文章创建人 拍明
  什么是PIC单片机?

  PIC单片机(Peripheral Interface Controller)是一种用来开发的去控制外围设备的集成电路(IC)。一种具有分散作用(多任务)功能的CPU。与人类相比,大脑就是CPU,PIC 共享的部分相当于人的神经系统。

  PIC 单片机是一个小的计算机

  PIC单片机有计算功能和记忆内存像CPU并由软件控制允行。然而,处理能力—存储器容量却很有限,这取决于PIC的类型。但是它们的最高操作频率大约都在20MHz左右,存储器容量用做写程序的大约1K—4K字节。

  时钟频率与扫描程序的时间和执行程序指令的时间有关系。但不能仅以时钟频率来判断程序处理能力,它还随处理装置的体系结构改变(1*)。如果是同样的体系结构,时钟频率较高的处理能力会较强。

  这里用字来解释程序容量。用一个指令(2*)表示一个字。通常用字节(3*)来表示存储器(4*)容量。一个字节有8位,每位由1或0组成。PIC16F84A单片机 的指令由14位构成。当把1K个子转换成位为:1 x 1,024 x 14 = 14,336位。再转换为字节为:14,336/(8 x 1,024) = 1.75K。在计算存储器的容量时,我们规定 1G 字节 = 1,024M 字节, 1M 字节 = 1,024K 字节, 1K 字节= 1,024 字节. 它们不是以1000为倍数,因为这是用二进制计算的缘故。

  1. 计算机的物理结构,包括组织结构、容量、该计算机的CPU、存储器以及输入输出设备间的互连。经常特指CPU的组织结构,包括它的寄存器、标志、总线、算术逻辑部件、指令译码与执行机制以及定时和控制部件。

  2. 指出某种操作并标识其操作数(如果有操作数的话)的一种语言构造

  3. 作为一个单位来操作(运算)的一个二进制字符串,通常比计算机的一个字短。

  4. 处理机内的所有可寻址存储空间以及用于执行指令的其它内存储器。

  在计算存储器的容量时,我们规定 1G 字节 = 1,024M 字节, 1M 字节 = 1,024K 字节, 1K 字节= 1,024 字节. 它们不是以1000为倍数,因为这是用二进制计算的缘故。

  用PIC单片机使电路做的很小巧变得可能。

  因为PIC单片机可以把计算部分、内存、输入和输出等都做在一个芯片内。所以她工作起来效率很高、功能也自由定义还可以灵活的适应不同的控制要求,而不必去更换不同的IC。这样电路才有可能做的很小巧。

  单片机是由哪几部分组成的?

  答:单片机是在一块集成电路芯片上装有CPU和程序存储器、数据存储器、输入/输出接口电路、定时/计数器、中断控制器、模/数转换器、数/模转换器、调制解调器以及其他部件等的系统。视其型号不同,其组成部分各异。

  单片机与单板机在组成上各有什么特点?

  答:单片机与单板机最大的不同在于系统组成。

  单片机是在一块集成电路芯片上集成有CPU、程序存储器、数据存储器、输入/输出接口电路、定时/计数器、中断控制器、模/数转换器、数/模转换器、调制解调器等部件。

  单板机是把微型计算机的整个功能体系电路(CPU、ROM、RAM、输入/输出接口电路以及其他辅助电路)全部组装在一块印制电路板上,再用印制电路将各个功能芯片连接起来。

  单片机在性能上比单板机有什么优良特性?

  答:在硬件规模方面,单片机相当于将一个基本规模的单板机所具有的资源复合在一块芯片上,因此具有相当的规模.

  在功能方面,单片机已经超过了单板机的功能.

  在指令系统方面,如果将单片机的指令系统与Z80的指令系统相比较,除单片机的数据传送能力较弱一点之外,单片机的指令系统已大大超过Z80.

  此外,无论在性价比方面,还是在体积、重量方面相比较,单片机都比单板机优越得多.

  单片机具有哪些特点

  (1) 片内存储容量越来越大。

  (2) 抗干扰性好,可靠性高。

  (3) 芯片引线齐全,容易扩展。

  (4) 运行速度高,控制功能强。

  (5) 单片机内部的数据信息保存时间很长,有的芯片可以达到100年以上。

  单片机应用系统有什么特点

  答:(1)单片机构成的应用系统可靠性高。

  (2)系统配置规范 。

  (3)控制功能具有预想性,变动控制方案容易。

  (4)具有较高的性价比。

  单片机怎样应用

什么是PIC单片机.png

  答:简单地说,由于单片机本身就是一个计算机系统。

  因此,只要在单片机的外围适当加一些必要的扩展电路及通道接口,就可以构成各种应用系统,如工业控制系统、数据采集系统、自动控制系统、自动测试系统、检测监视系统、智能仪表、功能模块等。

  单片机应用系统有几种类别

  答:按照单片机系统扩展与系统配置,单片机应用系统可以分为最小应用系统、最小功耗系统、典型应用系统等。

  PIC系列单片机有什么优势?

  自从我95年接触PIC单片机以来,便一直热衷于这种单片机的开发与应用。有不少朋友问我:PIC到底有什么优势?也许你也会有这样的疑问,所以我在这里略谈几点自己的看法。

  1) PIC最大的特点是不搞单纯的功能堆积,而是从实际出发,重视产品的性能与价格比,靠发展多种型号来满足不同层次的应用要求。就实际而言,不同的应用对单片机功能和资源的需求也是不同的。比如,一个摩托车的点火器需要一个I/O较少、RAM及程序存储空间不大、可靠性较高的小型单片机,若采用40脚且功能强大的单片机,投资大不说,使用起来也不方便。PIC系列从低到高有几十个型号,可以满足各种需要。其中,PIC12C508单片机仅有8个引脚,是世界上最小的单片机.

  该型号有512字节ROM、25字节RAM、一个8位定时器、一根输入线、5根I/O线,市面售价在3-6元人人民币。这样一款单片机在象摩托车点火器这样的应用无疑是非常适合。PIC的高档型号,如PIC16C74(尚不是最高档型号)有40个引脚,其内部资源为ROM共4K、192字节RAM、8路A/D、3个8位定时器、2个CCP模块、三个串行口、1个并行口、11个中断源、33个I/O脚。这样一个型号可以和其它品牌的高档型号媲美。

  2) 精简指令使其执行效率大为提高。PIC系列8位CMOS单片机具有独特的RISC结构,数据总线和指令总线分离的哈佛总线(Harvard)结构,使指令具有单字长的特性,且允许指令码的位数可多于8位的数据位数,这与传统的采用CISC结构的8位单片机相比,可以达到2:1的代码压缩,速度提高4倍。

  3) 产品上市零等待(Zero time to market)。采用PIC的低价OTP型芯片,可使单片机在其应用程序开发完成后立刻使该产品上市。

  4) PIC有优越开发环境。OTP单片机开发系统的实时性是一个重要的指标,象普通51单片机的开发系统大都采用高档型号仿真低档型号,其实时性不尽理想。PIC在推出一款新型号的同时推出相应的仿真芯片,所有的开发系统由专用的仿真芯片支持,实时性非常好。就我个人的经验看,还没有出现过仿真结果与实际运行结果不同的情况。

  5) 其引脚具有防瞬态能力,通过限流电阻可以接至220V交流电源,可直接与继电器控制电路相连,无须光电耦合器隔离,给应用带来极大方便。

  6) 彻底的保密性。PIC以保密熔丝来保护代码,用户在烧入代码后熔断熔丝,别人再也无法读出,除非恢复熔丝。目前,PIC采用熔丝深埋工艺,恢复熔丝的可能性极小。

  7) 自带看门狗定时器,可以用来提高程序运行的可靠性。

  8) 睡眠和低功耗模式。虽然PIC在这方面已不能与新型的TI-MSP430相比,但在大多数应用场合还是能满足需要的。

  PIC单片机的型号繁多,对初学者来说实在不好应付,容易混淆,以下作一简单分类,希望有助于初学者学习:初档8位单片机:PIC12C5XXX/16C5X系列

  PIC16C5X系列是最早在市场上得到发展的系列,因其价格较低,且有较完善的开发手段,因此在国内应用最为广泛;而PIC12C5XX是世界第一个八脚低价位单片机可用于简单的智能控制等一些对单片机体积要求较高的地方,前景十分广阔。

PIC系列单片机有什么优势.png

  中档8位单片机:PIC12C6XX/PIC16CXXX系列

  PIC中档产品是Microchip近年来重点发展的系列产品,品种最为丰富,其性能比低档产品有所提高,增加了中断功能,指令周期可达到200ns,带A/D,内部E2PROM数据存储器,双时钟工作,比较输出,捕捉输入,PWM输出,I2C和SPI接口,异步串行通讯(USART),模拟电压比较器及LCD驱动等等,其封装从8脚到68脚,可用于高、中、低档的电子产品设计中,价格适中,广泛应用在各类电子产品中。

  高档8位单片机:PIC17CXX系列

  PIC17CXX是适合高级复杂系统开发的系列产品,其性能在中档位单片机的基础上增加了硬件乘法器,指令周期可达成160ns,它是目前世界上8位单片机中性价比最高的机种,可用于高、中档产品的开发,如马达控制

  Particle-in-cell(PIC方法,质点网格法)

  计算二维非定常可压缩理想流动问题的欧拉-拉格朗日混合方法,简称PIC法,它特别适用于计算具有多种介质和大变形流动的问题。

  在流体动力学中,通常可用欧拉和拉格朗日两种不同坐标系来求解流体动力学问题,即所谓欧拉法和拉格朗日法。欧拉法可用于求解流体大畸变问题,但精度不高,而且在各个区域进行物质输运时会产生严重的物质扩散,使界面和自由面的位置不能精确确定。拉格朗日法正好相反,计算精度较高,能精确确定界面和自由面,但不能处理流体大畸变和在各种介质之间有剪切间断的滑移现象。针对这种情况,美国F.H.哈洛等人于1955年成功地把欧拉法和拉格朗日法结合起来,提出了质点网格法。

  基本要点 PIC法的基本要点是,把含有多种介质的流动所通过的区域用欧拉法分成有限个网格,每个网格中的每种流体,用一组特定的离散化拉格朗日质点表示。

  只包含一种流体质点的格子称为纯单元,两种流体质点同时存在的格子称为混合单元,不存在任何流体质点的格子称为空单元。每个质点具有一定的质量,每个网格单元内的质点数目和质点分布都以流体流动的初始状态为依据,而且这些质点具有一定的速度和能量。计算开始后,质点在欧拉网格之间迁移,表示流体在运动。

  在每个时间步长内,计算分两步:第一步用欧拉法计算,即忽略偏微分方程中的输运效应,用差分方法计算由压力分布所引起的欧拉网格上速度(或动量)和能量的变化。若一个网格内含有多种流体,就应按一定的规则把能量的改变量适当分配给不同的质点。第二步是质点迁移计算,它是在第一步的基础上,按一定的加权平均方法计算出每个质点的速度和在时间步长结束时的新位置。一个质点从一个网格迁移到另一个网格,就把所携带的质量以及相应的动量和能量从原来的网格输送到新的网格中去。这一步实质上是对第一步计算中忽略的输运效应计算的补偿。

  在具有激波间断的流动中,处理激波间断是一个难题(见激波数值处理)。 PIC法由于有非线性的耗散效应,不仅可以减少差分格式所引起的起伏现象,而且起着类似于人工粘性的作用。因此,PIC法能自动处理流动中的激波间断。但在低速流动和固壁条件的计算中,这个耗散效应很弱,为了使计算稳定,还须引入人工粘性。

  PIC17CXX是适合高级复杂系统开发的系列产品,其性能在中档位单片机的基础上增加了硬件乘法器,指令周期可达成160ns,它是目前世界上8位单片机中性价比最高的机种,可用于高、中档产品的开发,如马达控制要得到较好的计算结果,除应考虑满足一定的稳定性条件外,还须考虑每个单元内的质点数目和分布以及它们的内能等。

  方法的推广 在PIC法基础上,人们提出了流体网格法(fluid-in-cell method),简称FLIC法。它和PIC法一样采用欧拉网格,不同的只是在第二步计算中不计算质点的迁移,而计算连续流体的迁移,即先算出通过网格边界的质量输送量,得出每个网格的新密度,再算出通过网格的质量所携带的动量和能量的输送量,最后得到每个网格的新速度和能量。FLIC法还有一套局部网格单元的计算格式,能计算一些边界形状比较复杂的问题。

  计算二维不可压缩粘性流动的 PIC法后来还发展成为所谓标记网格法(marker-and-cell method),简称MAC法。此法仍然采用欧拉矩形网格单元,对纳维-斯托克斯方程则用差分近似,而把压力和速度分量作为基本未知量。此外,这种方法还在网格中布置适量的标记点,但这种标记点和PIC法中的质点不同,本身并不带有质量。在每一个时间步长上,只用PIC法中确定质点速度的方法来确定每个标记的速度,并在整个计算中跟踪每个标记,以判定网格里有哪种流体存在。 因此MAC法能用于计算多种流体和带有自由面的问题。近年来,在研究爆炸和高速碰撞的现象中还发现介质会经历从固体(弹性、塑性、断裂)到流体的各个阶段,因而在计算时必须考虑固体强度效应,为此在PIC、FLIC和MAC等方法的基础上又导出一种计算流体-弹塑性流动的方法(computational method of hydro-elastic-plastic flow)其中最典型的是HELP编码(HELP code)计算方法。HELP编码包括三个步骤:第一步计算压力效应;第二步计算输运效应;第三步计算应力偏量效应。此外在多种介质界面和自由表面上引入一些没有质量的标记点,用以确定界面和自由面的位置。此外,近年来还广泛采用其他一些类型的欧拉-拉格朗日的混合方法。 最常用的是任意拉格朗日-欧拉方法(Arbitrary lagrangian-Eulerian Method),简称ALE法。它将离散化的方程建立在既非欧拉,又非拉格朗日的任意活动的网格上,以达到不断重分网格,适应大变形计算的目的。

  质点网格法以及由它演变出来的其他方法都具有数值模拟的特点。这些方法大都直接来源于对物理问题的描述,受数学方程的约束较小,因此能广泛应用于流体动力学的各个领域,如爆炸、燃烧高速碰撞以及物理-化学流体动力学、液体动力学等方面,甚至还可应用于电流体动力学、磁流体力学和相对论流体力学等方面。但是,对上述的研究还很不够,许多问题还只处于实验阶段。

  2.PIC单片机的概述

  PIC16F616是一款14引脚、8位的CMOS单片机.采用精简指令集,仅有35条指令,由于采用了数据总线和指令总线分离的哈佛总线结构,使得除少量指令不是单周期之外,大部分的指令都是单周期指令.这样有利于提高单片机的运行速度和执行效率.

  PIC16F616这款单片机供电电压可以在2V到5.5V之间,内部集成了一个RC振荡器,频率可以配置成8MHZ或者4MHZ,也可以用外部晶振提供时钟.内部集成有AD转换、比较器等硬件模块,还具有上电复位、欠压复位、看门狗、代码保护等功能.三个定时器、PWM发生器等可以由用户编程.下面我来一一介绍关于PIC单片机的这些模块和功能.

  3.存储器

  PIC16F616分为程序存储其和数据存储器,程序存储器的大小是2048words,数据存储器的大小是128bytes.

  程序存储器中0000H的地址为复位地址,当上电或者看门狗计时器等复位的时候,均会导致PC指针指向复位地址.地址0004H为中断地址,当无论发生什么中断的时候,PC指针就会指向此地址.在地址0005H~07FFH可以移植程序.

  数据存储器分为两个部分,分别叫做bank0和bank1,其中bank0的地址范围为:00H-7FH,Bank1的地址范围为80H-FFH.一般的寄存器都放在里面.可以通过寄存器STATUSL里面的RP0位来选择bank0和bank1.

  在编程序的时候要注意的是,当你要操作的寄存器在bank0的时候,先要选择bank0(将寄存器STATUS的RP0位置0),然后再对你所要操作的寄存器进行操作,当你要操作的寄存器在bank1的时候,同理先要选择bank1.

  如果想要定义一些变量,可以在数据存储器20H开始的地址定义,定义的地址范围为20H-7FH.一般这么多就够用了.

  4.PIC的输入输出端口

  在学习这个部分的时候,曾经遇到过一些问题.PIC单片机的引脚不多,大多都是复用引脚,例如AD、IO、比较器、外接晶振等等,所以在配置端口的时候,一定要知道每个功能怎样设置才能实现的,在这一小节中,我要讲的是通用IO口的设置问题.

  PIC16F616有12个IO口,但是有一个引脚(RA3)只能作为输入引脚用,不能用作输出,另外,A口具有电平变化中断的功能,而C口没有,在设计的时候要注意.

  在设置的时候,一般要进行以下几项设置:

  (1)设置端口是模拟端口还是数字端口,可以通过寄存器ANSEL来设置.例如你想用AD,就要将相应的引脚设置为模拟输入端口.

  (2)如果你选择的是数字端口,接下来就要设置端口的方向,是输入还是输出(RA3除外),可通过寄存器TRISA(A口)或TRISC(C口)来设置.

  (3)设置端口的输出电平,可以通过寄存器PORTA(A口)或PORTC(C口)来设置.

  这是对IO口的通用设置,但是这不是全部的设置,接下来的设置要看时A口还是C口了.对于A口,它有几个特殊的功能:内部弱上拉、电平变化中断、RA2/INT引脚的沿中断.如果想要这些功能,就要对相应的寄存器进行设置.

  弱上拉的设置:只有当引脚为输出的时候弱上拉才有效,可以通过寄存器WPUA来设置相应引脚的弱上拉,值得一提的如果开启了弱上拉,会有多余的电流浪费,这样对于低功耗的设计是不可取的,但是如果在进行一些例如键盘电路设计的候,可以开启弱上拉功能,这样就不需要在键盘电路中加上拉电阻了.

  电平变化中断的设置:可以通过寄存器IOCA来设置,但是首先要将相应引脚设置为数字端口且为输入状态.同时要将寄存器INTCON的REIE位设置为1,总中断要允许(置寄存器INTCON的GIE位),如果设置相应引脚有这个功能,当此引脚电平发生的时候,就会产生一个中断,同时一些中断标志位被置上(INTCON的RAIF位被置1),且总中断GIE被置为0.在中断服务程序中,要软件清除RAIF位和重新置GIE位才能继续开启此中断.

  RA2/INT脚的沿中断设置:同样首先要将相应引脚设置为数字端口且为输入状态,设置INTCON的INTF位为1,表示允许int引脚外部中断,寄存器OPTION_REG的INTEGD位可以设置是上升沿中断还是下降沿中断.当发生中断时,INTCON的INTF位被置为1,GIE被清零,在中断服务程序中,要软件清除INTF位和重新置GIE位才能继续开启此中断.

  对于C口,不能产生电平变化中断和沿中断.

  5.定时器

  定时器是单片机的一个很重要的部分,用它可以产生很多不同的定时时间,来满足程序设计的不同需求.PIC16F616有三个定时器,分别是Timer0、Timer1、Timer2.它们的用法不是很相同,下面来分别谈谈这三个定时器的用法和设置问题.

  (1)Timer0

  Timer0是一个八位的计数器,它有一个八位的计数寄存器TMR0,八位的预分频器(与看门狗共用),可以选择内部或者是外部时钟源,有计数器溢出中断的功能.

  Timer0可以作为一个定时器或者计数器来使用,与Timer0有关的寄存器有:TMR0,INTCON,OPTION_REG,TRISA.

  当Timer0作为定时器来使用的时候,要设置OPTION_REG的T0CS位为0,表示用的是内部时钟,每一个指令周期TMR0的值会增加(当没有预分频的时候),当TMR0被赋值的时候,会有两个指令周期的延时.预分频器可以和看门狗共用,可以由OPTION_REG的PSA位来设置,当PSA 为0的时候分频器选择Timer0,当PSA为1的时候分频器选择看门狗.同时,与分频器的分频值可以通过寄存器OPTION_REG来设置,设置的值可以由1:2到1:256.当Timer0的计数器TMR0计数从FFH到00H的时候会产生溢出,同时溢出标志位(INTCON寄存器的T0IF位)会置位(无论Timer0的中断是否开启),如果中断已经开启了(INTCON寄存器的T0IE被置位),那么就会产生溢出中断.T0IF位需要软件对其进行清零.

  当Timer0作为计数器来使用的时候,就要用外部时钟源(OPTION_REG的T0CS置1),每次当引脚T0CK1的沿到来时Timer0的 TMR0会增加1,上升沿和下降沿可以由OPTION_REG的T0SE来设置.中断和Timer0作为定时器使用时一样.在我们编程序的时候,可以用 Timer0进行定时或产生定时信息,下面我来解释定时器的定时时间的计算.假设Timer0用的时钟源是内部的4MHZ,那么每条指令的执行时间就是 1us,设Timer0的预分频系数是1:256,TMR0的初值是6,那么定时时间为:

  256×(256-6)×1us=64ms

  在编程的时候需要注意的是Timer0的中断是不能把单片机从SLEEP的状态唤醒的.

  (2)Timer1

  Timer1是一个十六位的计数器.它有一个计数寄存器对(TMR1H:TMR1L),时钟源也是内外可选的,具有一个2bit的预分频器,可以同步或者异步操作,具有中断功能,但是溢出中断只能在外部时钟、异步的模式才能将单片机从SLEEP中唤醒,Timer1具有捕获/比较功能,还有被一些特殊事件触发功能(ECCP),比较器的输出可以与Timer1的时钟同步.下面来一一介绍这些功能.

  在编程的时候也可以按照这样的步骤来进行.设置寄存器T1CON,时钟源可以选择外部或者内部的时钟源,外部时钟源可以选择LP晶体.Timer1在选择内部时钟时,可以运行在定时器的状态,选择外部时钟的时候,可以运行在定时器或者是计数器状态,工作于计数器状态时可以选择门限是高电平还是低电平计数.这些都可以通过寄存器T1CON来设置.

  以下是T1CON每个位的具体功能:bit1:Timer1是否开启位,当此位设为1时,Timer1开启,设为0时,Timer1关闭;bit2:时钟源选择位,置1时,选择外部时钟(T1CK1引脚的上升沿),此位置0时,选择的是内部时钟,并且和T1ACS(寄存器CM2CON1中)配合,当 T1ACS位为0时,时钟为FOSC/4,当T1ACS位为1时,时钟为FOSC.bit2:T1SYNC:定时器1的外部时钟输入同步位,当 TMR1CS位为1、T1SYNC位为1,定时器1被设置成与外部时钟不同步,T1SYNC位为0时,定时器1被设置成与外部时钟同步模式.Bit3: T1OSCEN:此位为1时Timer1的时钟选择LP,为0时LP晶体被关闭.Bit5-4:T1CKPS:Timer1时钟的预分频系数设置,通过这两位的是指,可以讲Timer1设置成1:1、1:2、1:4、1:8几种分频值.Bit6:TMR1GE:只有当TMR1ON位为1时才有效,当此位为 1时,Timer1计数被Timer1的门限控制,此位为0时,Timer1正常计数.Bit7:T1GINV:此位为1时,Timer1在门限为高时计数,此位为0时,Timer1在门限为低时计数.

  Timer1的中断编程:当Timer1的计数产生溢出的时候,如果Timer1中断允许的话,就会产生中断.中断可以这样设置,Timer1的中断允许位TMR1IE(在PIE1寄存器中)置1,寄存器INTCON的PEIE位置1,同时总中断位GIE(位于寄存器INTCON中)要置为1.当定时器产生中断的时候,会把中断标志T1IF置为1(位于寄存器PIR1中),然后PC指针指向0004H地址.T1IF位必须软件清除.

  (3)Timer2

  Timer2的功能于Timer1有些不同,Timer2时一个八位的计数器,有一个八位的计数寄存器TMR2,Timer2具有以下功能:有两个分频器,一个是前分频器,一个是后分频器.分频可以软件进行设置,另外,Timer2的时钟源是指令时间(FOSC/4),Timer2有一个寄存器 PR2,此寄存器的功能是当TMR2增加到PR2的值时,将产生中断,当然,中断必须允许,然后PR2的值会重新变为00H.下面来介绍Timer2的编程:

  Timer2的控制寄存器T2CON作用是设置Timer2的开启关闭和前后分频的分频系数,寄存器T2CON的TOUTPS3:0> 位设置后分频系数,可以被设置成1:1~1:16;位TMR2ON为1时,Timer2开启,为0时,Timer2关闭;位T2CKPS1: 0>可以设置前分频系数,可以被设置成1、4、16.

  Timer2的中断可以这样控制,允许Timer2中断位TMR2IE(位于PIE1寄存器内)被置1时,Timer2中断被允许,被置0时, Timer2中断禁止.寄存器INTCON的PEIE位置1,同时总中断位GIE(位于寄存器INTCON中)置为1.通过上面的设置,Timer2就可以产生中断了.当定时器产生中断的时候,会把中断标志T2IF置为1(位于寄存器PIR1中),然后PC指针指向0004H地址.中断标志位T2IF必须软件清除.

  下面是三个定时器的比较:

  唤醒功能

  其他功能

  定时器Timer0

  内部或外部时钟源,有一个预分频器.

  定时器、

  醒功能.

  计数器值溢出时发生中断

  预分频器与看门狗共用.

  定时器Timer1

  内部或外部时钟源,有一个预分频器

  定时器、计数器

  外部时钟、异步模式时可唤醒CPU

  计数器值溢出时发生中断

  与比较器模块、

  捕获/比较模块共用

  定时器Timer2

  有前分频器和后分频器

  醒功能.

  计数器值与预置值相等时发生中断

  PWM的产生需要此定时器

  6.AD模块

  PIC16F616有一个十位、八路的AD转换器.其参考电压可以为电源电压VDD,也可以是外部参考电压(VREF引脚),当AD转换完成后可以产生一个中断,此中断可以把单片机从睡眠状态中唤醒.下面来介绍一下关于AD转换的编程方法.

  要使用一个ADC,要做的有一下几件事情:

  (1)设置端口,需要采样模拟信号的端口必须设置为模拟输入状态,如果设置为数字端口,将使转换结果不正确,端口的模拟输入可以由寄存器ANSEL来配置,在讲RA口的时候已经说到了如何配置了.

  (2)通道的选择,有八路外部通道和三路内部通道,可以通过ADCON0寄存器的CHS3:0>位来设置通道的选择.

  (3)参考电压的选择,参考电压可以是VDD,也可以是外部参考电压,可以通过ADCON0寄存器的VCFG位来设置,当VCFG=0时,参考电压为VDD,当VCFG=1时,参考电压为外部参考电压(来自VREF引脚)

  (4)ADC的转换格式,AD转换后的结果保存在一个寄存器对里面:ADRESH和ADRESL,但是AD转换结果只有十位,设置AD转换格式可以通过设置 ADCON0的ADFM位来选择,当ADFM=1时10位的AD结果的低八位保存在ADRESL内,高两位保存在ADRESH内;当ADFM=0时10位的AD结果的高八位保存在ADRESH内,低两位保存在ADRESL内.

  (5)AD时钟源的选择,寄存器ADCON1专门来设置AD的时钟源,ADCS2:0>不同组合,可以将AD的时钟源设置为不同的频率,可以为FOSC/2、FOSC/4、FOSC/8、FOSC/16、FOSC/32、FOSC/64和FRC(内部RC).

  (6)AD中断的配置,要使用AD的中断功能,可以先把AD中断使能,ADIE位设置为1(在寄存器PIE1中),PEIE位置1(在INTCON寄存器中),总中断GIE位置1(INTCON寄存器中).

  要开始一个AD转换,首先要使能ADC模块,即把寄存器ADCON0的ADON位置1即可,然后将GO/DONE位(ADCON0中)置1就可以启动AD转换了.

  AD转换需要时间,转换1bit需要Tad的时间,Tad与AD转换的时钟源和VDD有关,转换十位就需要11个Tad时间,如果第一个AD转换完成了,要进行第二个AD转换,必须还要等待2*Tad的时间才能开始.一个AD完成了,GO/DONE位会被置为0,如果中断允许的话,就会产生中断,且中断标志位ADIF(寄存器PIR1内)会被置1,在AD中断程序中就可以把AD转换结果读取出来(读ADRESH和ADRESL),需要时把AD中断标志位清零.

PIC单片机有什么特点和优势.png

  AD中断可以把单片机从睡眠中唤醒,但是要注意,使用这个功能的时候,时钟源必须设置为FRC,否则的话在睡眠的时候就不会产生AD中断了.

  7.看门狗

  PIC16F616的看门狗WDT其定时计数的脉冲序列由片内独立的RC振荡器产生,所以它不需要外接任何器件就可以工作.而且这个片内RC振荡器与引脚OSC1/CLKIN上的振荡电路无关,即使OSC1和OSC2上的时钟不工作,WDT照样可以监视定时.例如:当PIC16F616在执行 SLEEP指令后,芯片进入休眠状态,CPU不工作,主振荡器也停止工作,但是,WDT照样可监视定时.当WDT超时溢出后,可唤醒芯片继续正常的操作.而在正常操作期间,WDT超时溢出将产生一个复位信号.如果不需要这种监视定时功能,在编程时,可关闭这个功能.

  WDT的定时周期在不加分频器的情况下,其基本定时时间是18ms,这个定时时间还受温度、VDD和不同元器件的工艺参数等的影响.如果需要更长的定时周期,还可以通过软件控制OPTION寄存器(PSA位置1)把预分频器配置给WDT,这个预分频器的最大分频比可达到1∶128.这样就可把定时周期扩大128倍,即达到2.3秒.

  WDT的预分频器是和Timer0所共用的,如果把预分频器配置给WDT,用CLRWDT和SLEEP指令可以同时对WDT和预分频器清零,从而防止计时溢出引起芯片复位.所以在正常情况下,必须在每次计时溢出之前执行一条CLRWDT指令喂一次狗,以避免引起芯片复位.当系统受到严重干扰处于失控状态时,就不可能在每次计时溢出之前执行一条CLRWDT指令,WDT就产生计时溢出,从而引起芯片复位,从失控状态又重新进入正常运行状态.

  当WDT计时溢出时,还会同时清除状态寄存器中的D4位T0,检测T0位即可知道复位是否由于WDT计时溢出引起的.

  8.比较器

  PIC16F616有两个比较器:C1和C2,C1的结构比C2的结构要简单,下面我分别对这两个比较器的用法和特性作简要说明.

  (4)比较器C1:它有一个独立的控制寄存器CM1CON0,通过这个寄存器可以对比较器C1进行一些设置.位C1ON可以控制C1的开启关闭,位C1OE 可以决定比较器的输出是从引脚输出还是内部输出,位C1POL可以选择比较器输出的极性,位C1R选择参考电压是链接到引脚C1IN+还是连接到 C1VREF,C1CH可以选择比较器负端从哪一个引脚输入的,位C1OUT存放了比较器的输出结果.

  (5)比较器C2:它的控制寄存器CM2CON0的操作跟C1一样,但是比较器C2比比较其C1功能要强,因为它与Timer1挂上钩了,C2可以连接到 Timer1,而C1不能.当C2与Timer1相连接的时候,C2的输出可以设置成与Timer1的下降沿锁定,如果Timer1有分频,则比较器的输出与分频后的Timer1下降沿锁定,可以通过相关寄存器来进行设置.

  (6)两个比较还有其它的功能,都能组成滞回比较器,这样就可以对输入电压有一定的滤波功能.两个比较器还可以形成一个SR锁存器.

  由于在本项目中没有选择用比较器这个功能,所以在这里就不详细叙述其细节设置,但要注意的是在不用此模块的时候,要能够保证此模块不能影响其他模块的正常工作,可以把比较器功能关闭(通过寄存器CM1CON0、CM2CON0的CxON位置0来关闭).

  9.捕获/比较/PWM功能

  PIC16F616具有捕获/比较/PWM的模块,下面来简单的介绍一下它们的功能.

  这三个功能需要定时器的支持,捕获和比较功能需要定时器Timer1的支持,PWM功能需要定时器Timer2的支持.都有中断的功能,选择这三种功能的某一种功能可以通过寄存器CCP1CON来设置.CCP1CON的低四位CCP1M3:0>可以通过不同的组合来开启某项功能和关闭所有功能,当CCP1M3:0>=0000的时候,捕获/比较/PWM模块的所有功能被禁止.具体其他的不同组合实现的功能,请参考 PIC16F616的用户手册.

  当选择捕获功能时,它可以捕获引脚CCP1发生的事件,同时把16位Timer1的计数值拷贝到CCPR1H:CCPR1L中来,引脚CCP1的发生事件可以指的是下列事件:CCP1引脚的每个上升沿或者下降沿、第四个上升沿、第十六个上升沿.可以通过寄存器CCP1CON的低四位CCP1M 3:0>来设置是哪一种事件.当事件发生的时候,单片机会置中断标志位CCP1IF(寄存器PIR1上),如果中断被允许(寄存器PEIE的位 CCP1IE=1)的话,就会产生中断,中断标志位CCP1IF需要软件清零.

  选择比较功能时,如果定时器Timer1的计数器值与寄存器CCPR1H:CCPR1L相等的话,将产生下面的事件:把引脚CCP1置1/0、产生一个中断、触发一个事件(把定时器Timer1的技术器TMR1清零,并且如果此时AD是允许的话,它将触发一次AD转换),这些事件可以通过寄存器 CCP1CON的低四位CCP1M3:0>来设置是哪一种事件.

  当选择PWM功能时,通过设置PR2、T2CON、CCPR1L、CCP1CON这四个寄存器,模块可以产生不同占空比的PWM波形.具体的设置和占空比的计算请参考手册.

  如果我们不需要这些功能,可以把这个模块关闭掉(设置CCP1M3:0>=0000即可).

  10. 复位、中断和睡眠

  (1)复位

  PIC16F616包括这样的几个复位功能,上电复位(Power-on)、硬件复位、欠压复位(Brown-out)、看门狗复位.

  关于上电复位POR,大家都不陌生,单片机在上电的时候保持复位直到电压能够满足其正常的工作电压,同时你可以通过对CONNFIG(编译器上即可设置)的设置,来开启Power-up Time,这个时间一般为64ms.

  硬件复位可以通过MCLR引脚外界复位电路,即可实现硬件复位(将此引脚接低电平).

  欠压复位这个功能是可选的,也可以直接在编译环境中配置CONFIG寄存器来开启此功能.当此功能开启时,如果单片机在运行的时候,供电电压不足就会引起欠压复位,复位后单片机如果发现供电电压已经达到正常值的时候,会有一个64ms的延时,然后再运行程序.

  关于看门狗的复位在看门狗部分已经说了.这里的一些复位还涉及到一些标志位.这些标志位分布在STATUS和PCON上面.STATUS上有两个位 TO、PD,当标志位TO=1时,表示表示已经操作了上电复位或者是执行了CLRWDT或者SLEEP指令,当TO=0时,表示发生了看门狗复位.当标志位PD=1时表示操作了上电复位或者是执行了CLRWDT指令,当PD=0时,表示执行了SLEEP指令.PCON上有两个标志位是POR和BOR,分别表示的是上电复位和欠压复位标志.具体的可以参看手册.

  (2)中断

  PIC16F616包括这样的几个中断源:RA2/INT引脚外部中断、RA端口电平变化中断、定时器Timer0、Timer1、Timer2溢出中断、比较器中断、AD转换中断、捕获/比较/PWM中断.

  这些中断的允许位和中断标志位分别位于INTCON、PIE1、PIR1、IOCA这些寄存器里面,如果要开启相应的中断,就要置相应的中断允许位,开启总中断位(INTCON寄存器的GIE位),还要开启INTCON上的PEIE位(定时器0溢出中断、INT引脚沿中断和RA端口的电平变化中断除外).

  当中断发生的时候,相应的中断标志位就会置起来,同时总中断标志位GIE会被清零,保证在此时间内不会相应其他的中断,然后将当前的PC指针值压栈保存,以用来保证中断能正确的返回到原来执行的地方.然后PC指针指向中断向量地址0004H的地方,所以在编程序的时候,你可以在0004H的地址存一条跳转指令跳到你定义的中断服务程序里面去就可以了.如果在中断的时候想保存一些重要的寄存器的话,可以在中断程序的起始将其保存,然后在中断服务程序的末尾将其恢复即可.

  要注意的是中断标志位不会自己清零,这就需要在编程的时候在软件上对其清零,否则的话,单片机不停的执行中断服务程序.如果你想要在以后的程序中还能产生中断的话,就要把总中断允许位GIE重新置位.

  (3)睡眠

  要想让单片机睡眠的方法很简单,执行一条SLEEP指令就可以了,如果看门狗允许的话,WDT就会被清零,但是还保持运行,寄存器STATUS的PD位将会置0,TO位将会置1,IO口还保持原来的状态,在睡眠状态下,不能驱动振荡器了.

  有些事件可以将单片机从睡眠状态中唤醒:看门狗、RA口电平变化中断、外部复位引脚MCLK被拉低、RA2/int引脚沿中断、Timer1中断(必须工作在异步计数模式)、ECCP捕获模式中断、AD转换中断(时钟源必须为内部RC的时候)、比较器输出有变化,这些事件能够将单片机唤醒,其他的事件不能.

  如果某项能唤醒单片机的中断已经开了,当总中断允许位GIE为1的时候,单片机被唤醒后可以进入中断程序中去,而当GIE位为0的时候,单片机也可以被唤醒,但是是执行下面的语句,而不能进入中断程序中去.

  为了保证在执行SLEEP语句后看门狗能够清零,最好在SLEEP语句之前加一句清看门狗的语句CLRWDT.

  相关型号资料:AT25020N-10SC2.7 MUX08FP IRFI9520G TS83C51RB2-MC

  11. PIC单片机的一些电特性

  VSS引脚的最大输出电流和VDD最大的输入电流为:90mA;

  每个IO口的输出电流可达25mA,IO口总共输出电流可达90mA;

  每个IO口是由两个保护二极管上下钳位的.当电压超过VDD和VSS的时候,二极管最大能承受20mA的电流;

  IO口输入漏电流最大为±1uA,引脚MCLR和OSC漏电流最大为±5uA;

  PORTA内部弱上拉(若设置了此功能)电流最大为 400uA;

  IO口输出低电平为0.6V,输出高电压为VDD-0.7V;

  12. 编程注意事项及技巧

  在编程调试后和根据网上的一些资料和经验,我注意到了一些在编程的事项和技巧,通过这些设置,可以使系统更加稳定的工作,现在总结如下:

  (1)在设置端口的时候,先将端口输出你想要预置的值,以免发生出示状态的不稳定,影响系统正常工作.虽然在当前还没有定义端口是输出还是输入状态,这样做总是好的.

  (2)在开启某个中断功能的时候,最好将其中断标志位清一次零.

  (3)在设计低功耗的时候,其中有些功能是比较耗电的,如果不用的话,一定要将其关掉.例如将IO口设置成输入并将其悬空,就会很耗电流;RA口设置弱上拉的时候如果引脚接地,电流会很大;欠压复位也是一个耗电大户.而看门狗开启时用的时钟源为内部的RC,不怎么耗电;AD转换耗电也不多.

  (4)单片机里面的功能很多,在有些功能不需要的时候,一定要将其关闭(可以放在初始化程序之中),这样一来有利于程序的稳定性;二来可以省电,因为开启某个功能总是要电来驱动的.

  (5)如果一个寄存器被多种功能所共用,建议只对相应位进行操作,例如用BCF、BSF、或、异或、与、非等指令,而不要整个的将其赋值,以免弄错了使其他模块受到干扰。


责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

上一篇: PIC是什么
标签: PIC 单片机

相关资讯