0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >设计应用 > 基于SPMC65P2404A 8位工业控制单片机在CAN总线智能节点中的应用方案

基于SPMC65P2404A 8位工业控制单片机在CAN总线智能节点中的应用方案

来源: 电子发烧友
2018-09-20
类别:设计应用
eye 196
文章创建人 拍明

原标题:SPMC65单片机在CAN总线智能节点中的应用


1 Can总线概述

CAN, 全称为“Controller Area Network”,是国际上应用最广泛的现场总线之一。20世纪80年代初,德国Bosch公司为了解决现代汽车中众多的控制与测试仪表之间的数据交换问题,开发出 CAN总线。CAN总线能有效支持分布式控制或实时控制的串行通信网络,具有抗干扰性强和使用可靠等优点,最初主要应用汽车工业,现在广泛应用于汽车工业、航空工业和工业控制等自动化领域,如分布式环境监测系统、温室环境监控系统、变电站变监测系统等。

CAN总线是一种串行数据通信协议,其通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对数据的成帧处理,用户可在其基础上开发适应系统实际需要的应用层通信协议。CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块编码,采用这种方法可使网络内节点个数在理论上不受限制,还可使不同的节点同时收到相同的数据。

CAN总线提供高速数据传送, 在短距离(40m)条件下具有高速(1Mbit/s)数据传输能力,而在最大距离10000m时具有低速(5kbits/s)传输能力,极适合在高速的工业自控应用上,CAN总线可在同一网络上连接多种不同功能的传感器(如位置,温度或压力等)。

CAN总线的其他特点如下:

(1)它是一种多主总线,即每个节点机均可成为主机,且节点机之间也可进行通信;

(2)通信介质可以是双绞线、同轴电缆或光导纤维,通信速率可达1Mbps;

(3)数据段长度最多为8个字节,可满足通常工业领域中控制命令,工作状态及测试数据的一般要求。同时,8个字节不会占用总线时间过长,从而保证了通信的实时性;

(4)CAN协议采用CRC检验并可提供相应的错误处理功能,保证了数据通信的可靠性。

CAN可以以多主方式工作,网络上任意节点均可以在任意时刻主动地向总线上其它节点发送信息,实现点对点、一点对多点及全局广播几种方式发送接收数据;CAN采用非破坏性总线仲裁技术,当两个节点同时向总线上发送信息时,优先级低的节点主动停止数据发送,而优先级高的节点可不受影响地继续传输数据,节省了总线冲突仲裁时间。

图1-1为一个CAN总线应用系统,主要有主机和各节点组成,主机和节点之间通过CAN收发器及CAN控制器相连,单个节点包括一个单片机控制器、一个CAN收发器和一个CAN控制器。其中一个典型的应用是:主机接收各节点发送的现场数据,如现场温度、电流或压力等参数,主机经过综合计算、判断作出相应的控制命令,这些命令将通过CAN总线传送至各节点。各节点由单片机作为控制器,它用于采集现场的各项参数,并执行主机发送的各项命令,这些命令将最终传送至各执行机构,如阀门、电机或泵等。

CAN总线应用系统.png

图1-1 CAN总线应用系统

本文将介绍基于凌阳8位通用型工控单片机的CAN总线智能节点的设计。本文将阐述智能节点中的主控器SPMC65P2404A在本方案中的应用特点,及主控器与CAN总线控制器之间的通信。

2 芯片特性简介

SPMC65P2404A是凌阳推出的8位工业控制单片机,最高工作频率为8MHz,工作电压3.0V~5.0V,有192字节的RAM和4K字节的OTP ROM,具备23个可编程IO口,内置上/下拉电阻,8通道10位A/D转换器(100KHz),SPMC65P2404其他特性包括:

◆凌阳科技8位单片机

☉182条指令

☉11种寻址模式

☉支持位操作(Set,Clear,Inverse,Test)

◆2个8位可编程定时器/计数器(可自动预置初始计数值)

☉普通的定时/计数器

☉具有8位捕获功能

☉具有8位比较功能

◆2个16位可编程定时器/计数器(可自动预置初始计数值)

☉普通的定时/计数器

☉具有8或16位捕获功能

☉具有16位比较功能

☉12位PWM输出

◆中断方式

☉支持IRQ和NMI中断

☉4种外部中断

☉12种内部中断

◆具有SPI总线:最高通信速率为2Mbps

◆5种复位功能:上电复位、低电压复位、看门狗复位、外部复位及错误地址复位

◆支持3种时钟电路:晶体振荡器、RC振荡、外部信号

◆2种低功耗模式:Halt模式和Stop模式

◆一个蜂鸣器驱动输出口

SPMC65P2404A芯片特性简介

SPMC65系列单片机是凌阳科技公司设计开发的8位工业级通用型单片机,具有超强的抗干扰能力,广泛应用于家用电器、工业控制、仪器仪表等控制领域。SPMC65P2404A单片机功能特点如下:


● SPMC65 CPU 
 - 支持 182 条指令, 11 种寻址方式 
 - 系统时钟频率最高可达 8MHz 
 - 支持位操作指令(置 1 、清零、取反、测试) 
 
● 存储空间 
 - 4K 字节的程序空间( OTP ),并且可设置保密功能。 
 - 192 字节的 RAM (含堆栈空间) 
 
● I/O 端口 
 - 23/15 个具有复用功能的双向 I/O 端口 
 - 可编程设置为带上拉 / 下拉电阻输入或者悬浮输入 
 - I/O 具备 LED 驱动能力 
 - 其中 2 个 I/O 端口能提供 20mA 的吸入电流

● 中断管理 
 - 外部中断选项:非屏蔽中断 NMI 或可屏蔽中断 IRQ 
 - 支持 4 个外部中断,其中的一个可设置为非屏蔽中断 NMI 
 - 12 个内部中断

● 复位管理 
 - 上电复位 (POR) 
 - 低电压复位 (LVR) 
 - 看门狗复位 (WDR) 
 - 外部复位 (ERST) 
 - 非法地址复位 (IAR)

● 时钟管理 
 - 3 种时钟源:晶体 / 陶瓷振荡器、 RC 振荡器、外部时钟输入 
 - 在 RC 振荡模式下,能够输出时钟信号

● 电源管理 
 - 2 种省电模式: STOP 模式、 HALT 模式 
 
● 2 个外围模拟电路 
 - 8 通道 10 位精度的 A/D 转换器( 100KHz ) 
 - 低电压复位( 2.5V/4V ) 
 
● 2 通道 8 位定时 / 计数器 (
TImer0,TImer2) 
 - 定时、计数功能 
 - 捕获功能( 8 位脉宽测量) 
 - 8 位比较输出功能

● 2 通道 16 位定时 / 计数器 (TImer1,TImer3) 
 - 定时、计数功能 
 - 捕获功能( 8 位脉宽 / 周期测量,或 16 位脉宽测量) 
 - 16 位比较输出功能 
 - 12 位 PWM 输出功能 
 
● 时基定时器 
 - 频率选择: 1KHz ~ 62.5KHz @8MHz 
 - 7 级分频选择 
 
● 蜂鸣器输出 
 - 频率选择: 1KHz ~ 2MHz @8MHz 
 - 12 级分频选择 
 
● 可编程看门狗定时器 
 - 中断频率选择: 1.5Hz ~ 195Hz

● 串行总线接口 
 - SPI 总线频率:最高为 2MHz @8MHz

3 智能节点硬件设计

在工业控制中,通常需要进行电压、电流、温度等信号的实时采集、可靠传输和实时显示,实现了PC端对CAN智能节点的有效控制。为了达到工业控制上这些控制要求,CAN总线上的节点通常需要有微控器作为节点的主控器。主控器完成现场各项参数的采集、响应相关的外部事件、接受外部按键命令、产生驱动信号、显示相关参数及与CAN总线控制器通信。图3-1为SPMC65P2404A作为节点控制器,各个部件的连接示意图。

图 3-1 智能节点示意图.png

图 3-1 智能节点示意图

※ 数据采集部件:

在工业控制现场,通常会有各类传感器,如电流互感器、温度传感器力传感器等,将现场的电流、温度及压力等参数转化为模拟电信号,这些模拟信号输入MCU中的A/D转换器,最终得到可传输的数字信号。SPMC65P2404A具有8通道10位精度的A/D转换器,并可以选择内部或外部参考电压,能够满足多通道、高精度的模数转换。

※ 现场人机交互部件:

人机交互部件可以实现工作人员在现场对某个节点进行操作控制,人机交互部件包括键盘、红外遥控器、LED或LCD显示。比如,显示模块可以实时显示现场参数,工作人员操作键盘或遥控器上的某些按键,可以启动电机或电阀门等执行机构,使系统达到预设定的效果。

SPMC65P2404A具有多组捕获功能,使用捕获功能,可以很方便的实现红外信号解码。

※ 快速响应外部突发事件:

在工业控制现场,突发事件保护机制非常重要。对现场的突发事件实行快速响应,并做出保护动作将使控制现场更安全。在节点设计中,可以使用MCU快速响应外部中断,在MCU的中断程序中,切断驱动信号的输出。SPMC65P2404A能够响应4个外部中断,并且每个外部中断可以设定为非屏蔽中断或屏蔽中断。

※ 产生执行机构的驱动信号:

工业控制现场会有多种执行机构,如电机、电阀门等,正对各种每种执行机构,MCU会输出相应的驱动信号,以控制这些机构。SPMC65P2404A具有2路12位的PWM输出能力,有2路比较输出功能,同时,每个I/O口都具备驱动LED的能力。利用SPMC65P2404A的这些功能,并配合相应的驱动电路,就可以有效控制电机、电阀门等。

※ 节点通信连接:

在智能节点的设计中,需要使用CAN控制器及CAN收发器,作为主控器与CAN总线之间的连接媒介。本智能节点使用MCP2510作为CAN控制器和PCA82C250作为CAN收发器。它们之间的连接是:MCU主控器通过SPI总线与CAN控制器通信,CAN控制器通过光电隔离器件与CAN收发器连接。SPMC65P2404A内部集成SPI总线,SPI总线支持全双工同步传输,具有主、从两种模式,最高通信速率为2Mbps。CAN控制器MCP2510也具备SPI总线。

4 智能节点软件设计

智能节点程序包括主程序和中断程序两部分,主程序处理常规的数据采集及控制操作,中断程序则处理异常事件及红外信号解码。

主程序包括系统初始化、按键扫描、红外信号处理、显示处理、电流信号采集、温度数据采集、压力信号采集、与CAN控制器通信、驱动信号产生等模块。程序流程图如图4-1所示:

图 4-1 主程序流程图.png

图 4-1 主程序流程图

主流程采用分时结构,在每个不同的时间片进行不同的工作。对主程序的循环时间实行定时,使得主程序每1ms循环一次。


【CAN总线】

CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由以研发和生产汽车电子产品著称的德国BOSCH公司开发的,并最终成为国际标准(ISO 11898),是国际上应用最广泛的现场总线之一。 在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。

优势

CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。较之许多RS-485基于R线构建的分布式控制系统而言,基于CAN总线的分布式控制系统在以下方面具有明显的优越性:

网络各节点之间的数据通信实时性强

首先,CAN控制器工作于多种方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位仲裁的方式竞争向总线发送数据,且CAN协议废除了站地址编码,而代之以对通信数据进行编码,这可使不同的节点同时接收到相同的数据,这些特点使得CAN总线构成的网络各节点之间的数据通信实时性强,并且容易构成冗余结构,提高系统的可靠性和系统的灵活性。而利用RS-485只能构成主从式结构系统,通信方式也只能以主站轮询的方式进行,系统的实时性、可靠性较差;

开发周期短

CAN总线通过CAN收发器接口芯片82C250的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。这就保证不会在出现在RS-485网络中的现象,即当系统有错误,出现多节点同时向总线发送数据时,导致总线呈现短路,从而损坏某些节点的现象。而且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响,从而保证不会出现像在网络中,因个别节点出现问题,使得总线处于“死锁”状态。而且,CAN具有的完善的通信协议可由CAN控制器芯片及其接口芯片来实现,从而大大降低系统开发难度,缩短了开发周期,这些是仅有电气协议的RS-485所无法比拟的。

已形成国际标准的现场总线

另外,与其它现场总线比较而言,CAN总线是具有通信速率高、容易实现、且性价比高等诸多特点的一种已形成国际标准的现场总线。这些也是CAN总线应用于众多领域,具有强劲的市场竞争力的重要原因。

最有前途的现场总线之一

CAN 即控制器局域网络,属于工业现场总线的范畴。与一般的通信总线相比,CAN总线的数据通信具有突出的可靠性、实时性和灵活性。由于其良好的性能及独特的设计,CAN总线越来越受到人们的重视。它在汽车领域上的应用是最广泛的,世界上一些著名的汽车制造厂商都采用了CAN总线来实现汽车内部控制系统与各检测和执行机构间的数据通信。同时,由于CAN总线本身的特点,其应用范围已不再局限于汽车行业,而向自动控制、航空航天、航海、过程工业、机械工业、纺织机械、农用机械、机器人、数控机床、医疗器械及传感器等领域发展。CAN已经形成国际标准,并已被公认为几种最有前途的现场总线之一。其典型的应用协议有:SAE J1939/ISO11783、CANOpen、CANaerospace、DeviceNet、NMEA 2000等。

特点

CAN总线是德国BOSCH公司从80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通信速率最高可达1Mbps。

完成对通信数据的成帧处理

CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。

使网络内的节点个数在理论上不受限制

CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码。采用这种方法的优点可使网络内的节点个数在理论上不受限制,数据块的标识符可由11位或29位二进制数组成,因此可以定义2或2个以上不同的数据块,这种按数据块编码的方式,还可使不同的节点同时接收到相同的数据,这一点在分布式控制系统中非常有用。数据段长度最多为8个字节,可满足通常工业领域中控制命令、工作状态及测试数据的一般要求。同时,8个字节不会占用总线时间过长,从而保证了通信的实时性。CAN协议采用CRC检验并可提供相应的错误处理功能,保证了数据通信的可靠性。CAN卓越的特性、极高的可靠性和独特的设计,特别适合工业过程监控设备的互连,因此,越来越受到工业界的重视,并已公认为最有前途的现场总线之一。

可在各节点之间实现自由通信

CAN总线采用了多主竞争式总线结构,具有多主站运行和分散仲裁的串行总线以及广播通信的特点。CAN总线上任意节点可在任意时刻主动地向网络上其它节点发送信息而不分主次,因此可在各节点之间实现自由通信。CAN总线协议已被国际标准化组织认证,技术比较成熟,控制的芯片已经商品化,性价比高,特别适用于分布式测控系统之间的数据通讯。CAN总线插卡可以任意插在PC AT XT兼容机上,方便地构成分布式监控系统。

结构简单

只有2根线与外部相连,并且内部集成了错误探测和管理模块。

传输距离和速率

CAN总线特点:(1) 数据通信没有主从之分,任意一个节点可以向任何其他(一个或多个)节点发起数据通信,靠各个节点信息优先级先后顺序来决定通信次序,高优先级节点信息在134μs通信; (2) 多个节点同时发起通信时,优先级低的避让优先级高的,不会对通信线路造成拥塞; (3) 通信距离最远可达10KM(速率低于5Kbps)速率可达到1Mbps(通信距离小于40M);(4) CAN总线传输介质可以是双绞线,同轴电缆。CAN总线适用于大数据量短距离通信或者长距离小数据量,实时性要求比较高,多主多从或者各个节点平等的现场中使用。

技术介绍

位仲裁

要对数据进行实时处理,就必须将数据快速传送,这就要求数据的物理传输通路有较高的速度。在几个站同时需要发送数据时,要求快速地进行总线分配。实时处理通过网络交换的紧急数据有较大的不同。一个快速变化的物理量,如汽车引擎负载,将比类似汽车引擎温度这样相对变化较慢的物理量更频繁地传送数据并要求更短的延时。

CAN总线以报文为单位进行数据传送,报文的优先级结合在11位标识符中,具有最低二进制数的标识符有最高的优先级。这种优先级一旦在系统设计时被确立后就不能再被更改。总线读取中的冲突可通过位仲裁解决。例如标识符0111111、0100100、0100111发生位仲裁时,0100100报文将会被跟踪,而其余报文会被丢弃。具体过程为:当几个站同时发送报文时,站1的报文标识符为0111111,站2的报文标识符为0100110,站3的报文标识符为0100111,所有标识符都有相同的两位01,直到第3位进行比较时,站1的报文被丢弃,因为它的第3位为高,而其它两个站的报文第3位为低。站2和站3报文的4、5、6位相同,直到第7位时,站3的报文才被丢弃。注意,总线中的信号持续跟踪最后获得总线读取权的站的报文。在此例中,站2的报文被跟踪。这种非破坏性位仲裁方法的优点在于,在网络最终确定哪一个站的报文被传送以前,报文的起始部分已经在网络上传送了。所有未获得总线读取权的站都成为具有最高优先权报文的接收站,并且不会在总线再次空闲前发送报文。

CAN具有较高的效率是因为总线仅仅被那些请求总线悬而未决的站利用,这些请求是根据报文在整个系统中的重要性按顺序处理的。这种方法在网络负载较重时有很多优点,因为总线读取的优先级已被按顺序放在每个报文中了,这可以保证在实时系统中较低的个体隐伏时间。

对于主站的可靠性,由于CAN协议执行非集中化总线控制,所有主要通信,包括总线读取 (许可)控制,在系统中分几次完成。这是实现有较高可靠性的通信系统的唯一方法。

CAN与其它通信方案的比较

在实践中,有两种重要的总线分配方法:按时间表分配和按需要分配。在第一种方法中,不管每个节点是否申请总线,都对每个节点按最大期间分配。由此,总线可被分配给每个站并且是唯一的站,而不论其是立即进行总线存取或在一特定时间进行总线存取。这将保证在总线存取时有明确的总线分配。在第二种方法中,总线按传送数据的基本要求分配给一个站,总线系统按站希望的传送分配(如:EthernetCSMA/CD)。因此,当多个站同时请求总线存取时,总线将终止所有站的请求,这时将不会有任何一个站获得总线分配。为了分配总线,多于一个总线存取是必要的。

CAN实现总线分配的方法,可保证当不同的站申请总线存取时,明确地进行总线分配。这种位仲裁的方法可以解决当两个站同时发送数据时产生的碰撞问题。不同于Ethernet网络的消息仲裁,CAN的非破坏性解决总线存取冲突的方法,确保在不传送有用消息时总线不被占用。甚至当总线在重负载情况下,以消息内容为优先的总线存取也被证明是一种有效的系统。虽然总线的传输能力不足,所有未解决的传输请求都按重要性顺序来处理。在CSMA/CD这样的网络中,如Ethernet,系统往往由于过载而崩溃,而这种情况在CAN中不会发生。

CAN的报文格式

在总线中传送的报文,每帧由7部分组成。CAN协议支持两种报文格式,其唯一的不同是标识符(ID)长度不同,标准格式为11位,扩展格式为29位。

在标准格式中,报文的起始位称为帧起始(SOF),然后是由11位标识符和远程发送请求位 (RTR)组成的仲裁场。RTR位标明是数据帧还是请求帧,在请求帧中没有数据字节。

控制场包括标识符扩展位(IDE),指出是标准格式还是扩展格式。它还包括一个保留位 (ro),为将来扩展使用。它的最后四个位用来指明数据场中数据的长度(DLC)。数据场范围为0~8个字节,其后有一个检测数据错误的循环冗余检查(CRC)。

应答场(ACK)包括应答位和应答分隔符。发送站发送的这两位均为隐性电平(逻辑1),这时正确接收报文的接收站发送主控电平(逻辑0)覆盖它。用这种方法,发送站可以保证网络中至少有一个站能正确接收到报文。

报文的尾部由帧结束标出。在相邻的两条报文间有一很短的间隔位,如果这时没有站进行总线存取,总线将处于空闲状态。

CAN数据帧的组成

远程帧

远程帧由6个场组成:帧起始、仲裁场、控制场、CRC场、应答场和帧结束。远程帧不存在数据场。

远程帧的RTR位必须是隐位。

DLC的数据值是独立的,它可以是0~8中的任何数值,为对应数据帧的数据长度。

错误帧

错误帧由两个不同场组成,第一个场由来自各站的错误标志叠加得到,第二个场是错误界定符

错误标志具有两种形式:

活动错误标志(Active error flag),由6个连续的显位组成

认可错误标志(Passive error flag),由6个连续的隐位组成

错误界定符包括8个隐位

超载帧

超载帧包括两个位场:超载标志和超载界定符

发送超载帧的超载条件:

要求延迟下一个数据帧或远程帧

在间歇场检测到显位

超载标志由6个显位组成

超载界定符由8个隐位组成

数据错误检测

不同于其它总线,CAN协议不能使用应答信息。事实上,它可以将发生的任何错误用信号发出。CAN协议可使用五种检查错误的方法,其中前三种为基于报文内容检查。

3.4.1循环冗余检查(CRC)

在一帧报文中加入冗余检查位可保证报文正确。接收站通过CRC可判断报文是否有错。

3.4.2 帧检查

这种方法通过位场检查帧的格式和大小来确定报文的正确性,用于检查格式上的错误。

3.4.3.应答错误

如前所述,被接收到的帧由接收站通过明确的应答来确认。如果发送站未收到应答,那么表明接收站发现帧中有错误,也就是说,ACK场已损坏或网络中的报文无站接收。CAN协议也可通过位检查的方法探测错误。

3.4.4 总线检测

有时,CAN中的一个节点可监测自己发出的信号。因此,发送报文的站可以观测总线电平并探测发送位和接收位的差异。

3.4.5 位填充

一帧报文中的每一位都由不归零码表示,可保证位编码的最大效率。然而,如果在一帧报文中有太多相同电平的位,就有可能失去同步。为保证同步,同步沿用位填充产生。在五个连续相等位后,发送站自动插入一个与之互补的补码位;接收时,这个填充位被自动丢掉。例如,五个连续的低电平位后,CAN自动插入一个高电平位。CAN通过这种编码规则检查错误,如果在一帧报文中有6个相同位,CAN就知道发生了错误。

如果至少有一个站通过以上方法探测到 一个或多个错误,它将发送出错标志终止当前的发送。这可以阻止其它站接收错误的报文,并保证网络上报文的一致性。当大量发送数据被终止后,发送站会自动地重新发送数据。作为规则,在探测到错误后23个位周期内重新开始发送。在特殊场合,系统的恢复时间为31个位周期。

但这种方法存在一个问题,即一个发生错误的站将导致所有数据被终止,其中也包括正确的数据。因此,如果不采取自监测措施,总线系统应采用模块化设计。为此,CAN协议提供一种将偶然错误从永久错误和局部站失败中区别出来的办法。这种方法可以通过对出错站统计评估来确定一个站本身的错误并进入一种不会对其它站产生不良影响的运行方法来实现,即站可以通过关闭自己来阻止正常数据因被错误地当成不正确的数据而被终止。

硬同步和重同步

硬同步只有在总线空闲状态条件下隐形位到显性位的跳变沿发生时才进行,表明报文传输开始。在硬同步之后,位时间计数器随同步段重新开始计数。硬同步强行将已发生的跳变沿置于重新开始的位时间同步段内。根据同步规则,如果某一位时间内已有一个硬同步出现,该位时间内将不会发生再同步。再同步可能导致相位缓冲段1被延长或相位缓冲段2被短。这两个相位缓冲段的延长时间或缩短时间上限由再同步跳转宽度(SJW)给定。



责任编辑:David

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯