0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >技术信息 > CAN总线研究以及在汽车车声控制中的应用

CAN总线研究以及在汽车车声控制中的应用

2017-08-28
类别:技术信息
eye 172
文章创建人 拍明

  CAN总线可以满足许多工业监控系统的要求。本文介绍了CAN的结构,网络协议及控制器的使用。


  一、引言


  在计算机数据传输领域内,长期以来使用RS-232和CCITTV.24通信标准,尽管它们被广泛地使用,但却是一种低数据速率和点对点的数据传输标准,无能力支持更高层次的计算机之间的功能操作。同时,在复杂或大规模的应用(如工业现场或生产自动化领域)中需采用传统星型拓扑结构,那么安装成本和介质造价都将非常高昂;采用流行的LAN组件及环型或总线型拓扑结构,虽然可以减少电缆长度,但是增加的LAN介质及相关硬件和软件又使其系统造价与星型系统相差无几。所以在最低层次上的确需要设计出一种造价低廉而又能经受工业现场环境的通信系统,现场总线(Field bus)就是在这种背景下产生的。


  二、CAN总线


  控制器局部网(CAN-Controller Area Network)属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通讯网络。CAN的应用范围遍及从高速网络到低成本的多线路网络。在自动化电子领域的汽车发动机控制部件、传感器、抗滑系统等应用中,CAN的位速率可高达1Mbps。同时,它可以廉价地用于交通运载工具电气系统中,例如,灯光聚束电气窗口等等以代替所需要的硬件连接。

  CAN总线采用双线串行通信方式,检错能力强,可在高噪声干扰环境中合作。CAN具有优先权和仲裁功能,多个控制模块通过CAN控制器挂到CAN-bus上,形成多主机局部网络。其可靠性和实时性远高于普通的通信技术。


  三、CAN控件的硬件构成


  由于CAN总线具有通讯速率高,可靠性高,连接方便和性能价格比高等诸多特点,推动其应用开发的迅速发展,其产品正逐步形成系列。下面以PHILIPS82C200为例说明。82C200分为控制寄存器、命令寄存器、状态寄存器、中断寄存器、验收码寄存器、验收屏蔽寄存器、总线定时寄存器、输出控制寄存器、测试寄存器、发送缓存器、接收缓存器和时钟分频寄存器,十三种寄存器。


  四、CAN控制器的初始化


  在初始化之前,应设置输出控制寄存器的复位请求位为高,再设置其它寄存器。控制寄存器设定中断,命令寄存器控制缓存器的接发状态,中断寄存器查询82C200的工作状态,接收码寄存器设定工作地址,接收屏蔽寄存器设定工作形式,总线定时寄存器设定工作频率、采样频率,输出控制寄存器一般为正常输出方式,最后应使复位请求位从高变低,使CAN控制器进入正常工作状态。


  五、CAN的通信协议


  CAN控制器支持四种不同的CAN协议类型:数据帧、远程帧、出错帧和超载帧。具体可参见CAN技术规范2.0a或2.0b以及CAN国际标准ISO11898。这里只介绍一下数据帧。

  CAN中的总线数值为两种互补逻辑数值:显性(表示逻辑“0”)或隐性(表示逻辑“1”)。

  数据帧从一个发送节点传送数据以一个或多个接收节点,一个数据帧由七个不同的位场组成如图1所示:帧起始、仲裁场、控制场、循环冗余校验(CRC)场、应答场、帧结束。

数据帧的结构示意图.png

  图1 数据帧的结构示意图


  六、CAN协议的分层结构


  CAN协议是一种串行数据通信协议,它可以非常有效地构成分布式实时监测/控制系统。CAN总线规范规定了任意两个CAN节点之间的兼容性,包括电气特性及数据解释协议,它采用了ISO-OSI中的三层网络结构——物理层、数据链路层和应用层。其中应用层可能包含了除物理层和数据链路层外其余四层中的某些功能。它具有简化的网络结构。CAN总线体系结构模式如图2所示。

CAN总线体系结构

  图2 CAN总线体系结构

  带有CAN通信接口的工业控制产品可通过双绞线接入CAN,这使得CAN的组网和扩展变得容易。目前CAN总线应用研究还在不断深入,随着CAN总线的国际标准化,具有优先权和仲裁权功能,通信速率高,可靠性和实时性高,连接方便和性能价格比高等优点CAN网络将会得到迅速的发展和应用。


  CAN总线在汽车车身控制中的应用


  一、引言20世纪80年代以来,随着集成电路和单片机在汽车上的广泛应用,汽车上的电子控制单元越来越多,例如电子燃油喷射装置、防抱死制动装置(ABS)、安全气囊装置、电控门窗装置和主动悬架等等。在这种情况下,如果仍采用常规的布线方式,即电线一端与开关相接,另一端与用电设备相通,将导致车上电线数目的急剧增加,使得电线的质量占整车质量的4%左右。另外,电控系统的增加虽然提高了轿车的动力性、经济性和舒适性,但随之增

  一、引言

  20世纪80年代以来,随着集成电路和单片机在汽车上的广泛应用,汽车上的电子控制单元越来越多,例如电子燃油喷射装置、防抱死制动装置(ABS)、安全气囊装置、电控门窗装置和主动悬架等等。在这种情况下,如果仍采用常规的布线方式,即电线一端与开关相接,另一端与用电设备相通,将导致车上电线数目的急剧增加,使得电线的质量占整车质量的4%左右。另外,电控系统的增加虽然提高了轿车的动力性、经济性和舒适性,但随之增加的复杂电路也降低了汽车的可靠性,增加了维修的难度。为此,改革汽车电气技术的呼声日益高涨。因此,一种新的概念——车用控制器局域网络CAN应运而生。

  CAN是控制器局域网络(Controller Area Network)的简称,它是由德国Bosch公司及几个半导体生产商开发出来的,CAN总线是一种串行多主站控制器局域网总线。它具有很高的网络安全性、通讯可靠性和实时性,而且简单实用,网络成本低。特别适用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境。


  二、CAN总线的技术特点


  CAN总线可有效支持分布式控制或实时控制。该总线的通信介质可以是双绞线、同轴电缆光纤,其主要特点如下:

  CAN总线为多主站总线,各节点可在任意时刻向网络上的其他节点发送信息,且不分主从;

  CAN总线采用独特的非破坏性总线仲裁技术,高优先级节点优先传送数据,故实时性好;

  CAN总线具有点对点、一点对多点及全局广播传送数据的功能;

  CAN总线采用短帧结构,每帧有效字节数最多为8个,数据传输时间短,并有CRC及其它校验措施,数据出错率极低;

  CAN总线上某一节点出现严重错误时,可自动脱离总线,而总线上的其他操作不受影响;

  CAN总线系统扩充时,可直接将新节点挂在总线上,因而走线少,系统扩充容易,改型灵活;

  CAN总线的最大传输速率可达1Mb/s,直接通信距离最远可达到10km(速率在5kbps以下);

  CAN总线上的节点数取决于总线驱动电路。在标准帧(11位报文标识符)时可达到110个,而在扩展帧(29位报文标识符)时,个数不受限。


  三、车身系统的CAN控制设计


  1. CAN总线网络系统架构

  现代汽车典刑的控制单元有发动机控制模块、变速器控制模块、多媒体控制模块、气囊控制模块、空调控制模块、巡航控制模块、车身控制模块(包括照明指示和车窗、刮雨器等)、防抱死制动系统(ABS)防滑控制系统(ASR)等。完善的汽车CAN总线网络系统架构如图1所示。

汽车CAN总线网络系统架构

  图1 汽车CAN总线网络系统架构


  2. CAN节点的硬件架构


  本系统中,CAN节点采用:

  ECU(AT89C51)+CAN控制器(SJA1000)+CAN收发器(PCA82C250)的电路结构以下是其核心芯片简介:

  (1)CAN控制器

  为了系统进一步扩展的需要,可选取支持CAN 2.0B通讯协议的芯片SJA1000。SJA1000是PHILIPS公司生产的既支持CAN 2.0B,又支持CAN 2.0A的CAN控制器,它与仅支持CAN 2.0A的CAN控制器PCA82C200在硬件和软件上完全兼容。

  (2)CAN收发器

  PCA82C250是PHILIPS推出的CAN控制器和物理总线接口芯片,可提供对总线的差分发送和接收。它与ISO 11898标准完全兼容,并有高速、斜率控制和待机3种不同的工作方式,可根据实际情况选择。

  (3)单片机AT89C51

  AT89C51是ATMEL公司的单片机。它是一种低功耗、高性能、内含4KB闪速存储器的8位CMOS微控制器,与工业标准MCS-51指令系统和引脚完全兼容。AT89系列的优越性在于其片内闪速存储器可进行1000次的编程与擦除,且数据不易丢失,数据可保存10年。

  CAN总线控制器、总线驱动器和单片机连接基本方法如图2所示。

CAN总线控制器、总线驱动器和单片机连接图

  图2 CAN总线控制器、总线驱动器和单片机连接图


  三、车身控制模块中的CAN应用层协议


  1. 协议原则

  本协议遵循CAN2.0B规范,根据车身控制模块的特点,采用源→目的方法,每个节点都有自己固定的标识地址,且节点数小于64,设计时可将中央控制模块设为主节点,而将车门、电动座椅子模块及自检子模块设置为从节点。本协议可完成以下功能:

  (1)特定信息的广播;

  (2)主从节点之间的连接;

  (3)主从节点之间的信息交换(包括故障信息)。

  本协议采用帧优先原则分配标识符,每一帧标识符中的高四位表示帧类型,不同帧类型有不同的优先权,优先权决定了各种信息帧在同等情况下的发送顺序,协议中的29位标识符的分配如下:

  帧类型(4位)+目的地址(6位)+源地址(6位)+命令(或状态、报告)属性(13位)[或数据属性+分段标志+分段号(共13位)]。

  对所有的命令或状态、数据、报告属性、除定时采集发送的数据外,原则上均需应答(发送确认帧以保证通讯正常)。

  2. 帧格式仲裁场和控制场定义

  仲裁场由29位标识符ID28-ID0以及SRR、IDE和RTR组成,SJA1000中的寄存器17-21用来存放扩展帧格式帧信息的标识符。发送时,SRR=1,IDE=1,RTR=1/0(远程帧/数据帧)。标识符中的ID28-ID25为车身控制模块交换报文的帧类型(共4位)。ID24-ID19为车身控制模块中帧信息使用者的地址(或称为目的地址,共6位)。ID18-ID13为车身控制模块中帧信息发送者的地址或称为源地址(共6位)。ID12-ID5为车身控制模块中交换的命令、状态、数据或报告属性(共8位),ID4位需附加命令或状态、数据、报告属性时的分段标志。ID3-ID0为附加命令或状态、数据、报告属性的分段号(共4位)。当ID4=0时,ID3-ID0控制场、数据寄存器0-7有效。对于远程帧,则可忽略ID4-ID0以及控制场的值。SJA1000的寄存器16低四位DLC3-DLC0可构成控制场,以决定数据帧的数据长度。

  3. 车身控制模块CAN2.0B通讯报文约定

  按车身控制模块的节点要求,通讯的信息帧分为表1所列的6种,表1中的优先级按序号从高到低排列。其目的地址和源地址的分配见表2所列。

  表1 车身控制模块帧模型

车身控制模块帧模型

  表2 车身控制模块各节点地址分配

车身控制模块各节点地址分配


责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: CAN总线

相关资讯