0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >行业趋势 > 晶闸管交流调功器在制氧厂再生加热器上的应用与直流稳压器的过流和短路保护

晶闸管交流调功器在制氧厂再生加热器上的应用与直流稳压器的过流和短路保护

2017-07-04
类别:行业趋势
eye 298
文章创建人 拍明
        交流电路中,在电源与负载之间串接入电力电子器件,由电力电子器件及其附件或辅助电路,对交流电力进行控制或开关的电力电子设备,即为半导体交流电力控制器,简称交流控制器。按不同控制方式,交流控制器可分为交流调压器、交流调功器和交流电力电子开关等三种型式。

晶闸管交流调功器采用过零触发电路、周波数控制方式,输出O100%可调节的波形呈正弦波群的电压和电流,使负载从电源吸取功率的平均值连续平滑可凋。调功器避免了相位控制时缺角正弦波产生的无线电射频干扰,使晶闸管触发导通时的瞬态浪涌电流di/dt大为减少。它用于以镍络或铁镍铝等电阻材料为发热元件的电加热器的温度自动控制,与PID温度凋节仪或计算机、温度传感器和电加热器组成闭环温控系统,温控精度可达±0.5%1%。下面以某钢铁公司制氧厂晶闸管交流调功器的应用为例进行分析。

2晶闸管交流调功器与加热器的系统图

结合工艺要求,该公司制氧厂分子筛再生电加热器为:三相电源,380VY接法,总功率624kW,电热元件共有78支,每支8kW,分两组,ABC0组功率为336kW(功率不可调)(如图1)A’B’C’0’组功率为288kW(用晶闸管交流调功器调节)其中晶闸管交流调功器基本原理框图见图2

1 晶闸管交流调功

2调功器基本器与加热器系统图原理框图

2中,点画线部分为调功器。快速熔断器Fu、反并联晶闸管Ⅵ‘、电流互感器TA等组成调功器主电路。零脉冲电路(1)、导通比电路(2)、过流截止电路(3)门电路(4)和脉冲变压器(5)组成晶闸管控制电路。电加热器负载RL,温度传感器BSTPID凋节器通过外控开关S与调功器组成闭环控制,可自动调节温度。

门电路(4)接受三个信号。首先是电路(1)发出的与电源电压波形过零点同步的触发脉冲,即零脉冲信号;其次是电路(2)周期性输出的高电平连续可调的导通比(占空比)信号;第三是过流截止信号。只要主电路没有出现过电流,电路(3)就输出高电平,门电路与脉冲变压器均输出与电源电压过流点同步的、数目连续可调的触发脉冲,使VT相应导通。所以,调功器输出功率可在零与全功率(导通比为1,即连续导通时的输出功率)输出之间平滑可调。

3 晶闸管交流调功器原理

晶闸管交流调功器包括周波控制器、温度显示及控制仪表、反并联可控硅、快速熔断器、过电流保护、音响报警、电源电压表、输出功率表。电路方框图如图3

3现场所用晶闸管交流调功器电源方框图

3.1 三相晶闸管交流调功器主电路联结型式

三相晶闸管交流调功器主电路图联结型式有六种

(1)带中性线联结(1型电路)见图4(a);

(2)开三角联结(2型电路)见图4(b);

(3)无中线星形联结(3型电路)见图4(c);

(4)三相两线控制联结(4型电路)见图4(d);

(5)三相单方向控制联结控制(5型电路)见图4(e);

(6)星形中心控制联结控制(6型电路)见图4(f)

该公司所用晶闸管交流调功器是无中线星形联结。该电路的三相晶闸管交流调功器可以接星形负载,也可接三角形负载。其特点是由两相构成回路,由此可知:该联结型式触发电路必须是双脉冲,或者是宽度大于>60。单脉冲。同时,从波形分析可知:该联结电路对晶闸管的耐压和电压上升率的要求都提高了;而且对星形负载,由于中点漂移,负载中点与接地外壳的耐压水平必须按线电压进行考虑。由于该联结型式负载联结方式灵活,既可星形又可三角形,而且不用中线,对图4(/It)所示联结可省1/4的敷线投资,因此是一种颇受欢迎的三相交流调功器主电路联结型式。

4三相晶闸管交流调功器主电路联结型式

晶闸管额定通态电流(有效值)为电路额定电流的两倍,留有充分的余量,其型号为KTY3Z3—1000A/1200V,额定容量660kW,冷却方式为风冷。

晶闸管按通间隔是连续的或是间隔的,分为连续式(又称定周期式)和间隔式(又称变周期式),本调功器为变周期周波控制器,其输出的正弦波是均匀分布的,其中重复周期以最小正弦波间隔安排。例如最小周期是输出功率50%的时候,周期40ms(0.04s),即导通1个周波,关断1个周波。在最大和最小输出功率时周期最大,如:在输出功率为99.9%,周期20s,即导999个周波,关断一个周波;在输出功率为O.1%时,周期亦20s,即导通一个周波,关999个周波。其输出波形如图5

5变周期晶闸管交流调功器输出波形

该公司所用晶闸管交流调功器控制器接受温度控制仪表输入信号,控制触发脉冲是否输出和输出的时间,也就是控制输出功率的大小。控制器还接受继电器送来的保护信号迅速截止触发脉冲,使晶闸管立即关断,而不受过载或短路电流的损害。另外通过转换开关,还可以手动控制。

3.2保护及报警

快速熔断器FU担任短路保护及过载保护。

温度控制器设有超温保护,当温度超过设定温度上限时,其内部无触点开关迅速闭合,使TG—G周波控制器的P+P一端子短接,触发脉冲立即停止输出,使晶闸管迅速关断。

所有保护动作,均发出报警声响和闪光信号,以引起值班人员注意。

3.3指示及测量

电源输人端各相有信号灯指示,输出端各相有信号灯。在电源两相间有交流电压PV测量线电压;调功器输出各相有积分功率PW测量输出功率百分值。积分功率表PW用电位器RP在额定功率调至满度。

3.4自动温度控制

温度的自动控制由温度自动控制仪完成,现代温度控制仪具有下述功能:

实测温度和设定温度的数字显示;

温度上限和下限报警的设置;

输出控制功率执行信号,模拟信号或逻辑信号;

使温度上升不过冲和很快稳定的PID控制参数,PID参数可调范围宽。

停电后无须重新设置设定点;少量的操作按钮,面板整洁。

3.5零线和接地

机柜内接入零线(N)、相线(L),以供给仪表、调功器工作220V电源,消耗功220VA

机柜下部备有接地螺栓,专用于机柜保护接地,接地电阻小于0.4Ω,不得做零线使用。

4现场所用晶闸管交流调功器操作

做完相应整机检查后,可以开机。

接通电源,合上自动空气开关,电压表应指示电源电压380V±10%,三个电源指示灯亮。系统中温控仪表指示灯亮。

按下启动按钮打开柜后门检查每个晶闸管上的冷却风扇是否转动,晶闸管散热器带电,严禁用手触及。

经过上述检查开始工作。将控制器面板上手动一自动转换开关拨至手动,将远程一本机开关选择至本机及将手动调节旋钮反时针旋到底,然后将电源开关按至,绿色指示灯发光。

手动调节加热功率:顺时针旋转手动调节旋钮,系统中TG上的红色指示灯即按1s左右周期闪光,同时槽型表头上的指针指出加热功率的百分比,加热功率越大,输出端各相信号灯的时间越长:当旋钮旋至最大时,输出端各相有信号灯长亮,加热功率为100%,在机柜上部的积分功率表也同时指出功率的百分比,并且三个输出指示灯也闪烁发光。

自动控制温度;将转换开关按至自动”(AUT)处,此时调功器即由温控仪自动控制。一般控制时,如加热器实际温度远离设定值,将全功率加热,直至加热器温度接近设定值,然后加热器功率将按PID曲线,自动将温度稳定在设定值。

当负载短路、过载,面板上相应的灯发亮,系统中扬声器发出报警声,此时按下系统中停止按钮,拉开电源输入开关关闭电源,检查并排除故障后,再次启动。

停机时将系统中TG“手动调节旋钮反时针旋到底,按下停止按钮,断开自动空气开关。

5结束语

晶闸管交流调功器不能平滑调节电压,不能用普通电压表、电流表测量,在晶闸管断续通断时,电源变压器和负载受电流通、断冲击,且负载电流中存在高次诣波(频率低于基波的诣波)分量,所以调功器的应用受到一定的限制。

但晶闸管交流调功器,以改变周期内周波数连续控温,精度高,温度波动小,是一种新型的控温方式;其采取正弦波过零触发方式,输出为完整的正弦波,因而其幅射干扰、传导干扰和负载电流的瞬态浪涌也最小;其运行时无噪音,寿命长,效率比电磁装置高(99%),功率因数也(eos‘p=1),有利于节能。

尽管功率场效应VDMOS 和绝缘栅双极型晶体管IGBT等电力半导体元器件层出不穷,且在电力电子技术领域占据重要位置,晶闸管(可控硅) 却因耐高压耐大电流冲击的特性,仍有着稳固的阵地,受到用户的青睐。在摈弃电流采样、放大和执行等多个环节的情况下,将单结晶体管移相触发器中的晶体管误差放大器改为集成运算放大器,就可实现晶闸管直流稳压器的过流及短路保护,简化了电路结构,并提高了整机的稳定可靠性能和AC - DC变换效率。

工作原理

误差放大器采用集成运放的晶闸管直流稳压器的控制电路如图1 所示。被控主电路(图中未画) 是三相半控整流桥,再经LC 平滑滤波器,输出+ 12. 8 V 平滑直流电压。三相半控整流桥中的三个晶闸管,分别由图示控制电路中的脉冲变压器T2a T2bT2c来触发。推动这三个脉冲变压器的三个移相触发电路是完全相同的,且共用一个误差放大器及其电压采样电路。为避免重复和繁琐,图中仅示出B 相的移相触发器电路, A 相和C 相电路则用虚线概括。

移相触发器电路仍沿用传统的单结晶体管式移相触发器。即当二极管VD3 阴极电压升高时,流过晶体管VT2 的电流(即电容C1 的充电电流) 减小,单结晶体管VT1 输出的脉冲电压后移,晶闸管导通角减小,输出电压减小。当VD3 管阴极电压下降时,VT2 管中电流增大,C1 充电速度加快,VT1 管输出脉冲电压前移,晶闸管导通角增大,输出电压也增大。但VT2 管中的最大电流是受电阻R3 阻值制约的,不可能无限制地增大,即晶闸管的最大导通角将由R3 锁定在小于180°大于的某个数值上。

将晶体管误差放大器更换为运算放大器式的误差放大器,电路结构将简化,且放大倍数方便可调,容易制成比例积分微分调节器(PID) ,使调压系统的动态特性更趋完美合理。VD2 管将C2 的平滑直流电压与移相触发器上的同步梯形波电压隔离开来。当来自主电路的+ 12. 8V 输出电压发生变化时,取样电位器RP 上的电压也成比例变化,从而使运放N 的同相输入端3 脚电压相应变化,输出端6 脚电压按放大倍数变化,最终导致晶闸管输出电压产生相反方向的变化,平衡主电路输出端的变化,保持了输出电压的稳定。

当主电路输出端出现过流或短路时,输出电压至少会产生较大下跌。而R3 的阻值又限制了晶闸管的最大导通角度,即使晶闸管已达到这个最大导通角,仍然无法补偿过电流在主电路上产生的压降,使主电路输出端+ 12. 8 V 电压严重下跌(短路时电压为0V) 。这样运放N 同相输入端3 脚电压就低于反相输入端2 脚,于是输出端6 脚输出超低电压,较大电流流过R3 VT2管集电极电压就会低于单结晶体管VT1 的峰点电压,VT1 管不能产生振荡脉冲,主电路中的三个晶闸管也就无法导通,实现了过流(短路) 保护。与此同时,蜂鸣器HA 鸣叫,发光二极管VL 点亮,以声光的形式告知操作人员:此时已处于过流(短路) 保护状态。

负载故障排除后,按一下恢复按钮SA C2上的直流电压通过电阻R7 重新使运放N 3 脚电压高于2脚,6脚再次输出较高电压,晶闸管恢复导通, + 12. 8V的输出电压恢复正常。电容C3 为启动电容,开机瞬间若无C3 ,主电路尚无直流电压输出,运放N 3 脚电压为零,而2 脚电压高于7 V 以上,故输出端6 脚电压很低(约为2V) ,电容C1 上电压达不到VT1 单结晶体管的峰点电压,VT1 管无脉冲电压输出,晶闸管不能导通,主电路输出端就会直处于零电压状态。设置C3 后, 开机瞬间同步电压通过VD2 管对C3 充电,在RP R11产生高于运放N 2 脚电压,6 脚即输出较高电压,使主电路输出端输出+12. 8 V 的直流电压。

不难看出,该电路与集电极输出式晶体管直流稳压器有相似之处,但该电路更优越——仅用一个电容就能自行启动,且丝毫不影响稳压性能。

晶闸管交流调功器在制氧厂再生加热器上的应用与直流稳压器的过流和短路保护.jpg

电路调试

该电路与主电路联通调试时,不妨将电阻R3 的阻值换大些,然后将主电路输出端负载逐渐加大。如果加至设定保护电流值以下的某个电流时输出电压突然降为零,这说明过流保护功能已开始实施,只是实施得过早了些。这时可将R3阻值减小一些,继续如前进行加载实验,此时的保护电流动作值应比上次大了一些。继续减小R3 阻值,直至达到设定保护电流时实施保护为止。R3 阻值确认后,当采用相同阻值的固定电阻器取代,尽量不用电位器,以免其阻值调乱而丧失或过早实施过流(短路) 保护功能,妨碍稳压器的正常应用。

众所周知,单结晶体管型触发器的触发功率并不很大,本文所述的应用电路用来触发三相半控晶闸管桥式整流器,其晶闸管规格为100A ,使+ 12.8V 稳压器输出电流可达180A ,超过180A 时,潜隐的过流(短路) 保护功能显现———单结晶体管VT1 失去振荡脉冲,三个晶闸管截止。主电路中的三相电源变压器(图中未画出) 的容量和额定电压值决定了待保护电流动作值的上限,至于上限之下为何值动作,那就要由电阻R3 的阻值大小来决定。实际上,单结晶体管VT1 和三极管VT2 的相关参数如分压比、峰点电压、谷点电压、电流放大倍数等,是与R3 阻值一起,共同来确定保护电流动作值的,不过VT1 VT2 管参数的离散性较大,一般只用调整R3 阻值大小的方法来确定保护电流的动作值,这样更方便更经济。这就不难理解:为什么同一型号同一规格的稳压器会出现不同的R3 阻值了。对同一台稳压器而言,三个触发器中的单结管VT1 、三极管VT2 和电阻R3 的参数值应分别保持一致,以确保三个晶闸管导通角的一致(对称) 性以及最佳纹波系数。

考虑到稳压器对输出电压的纹波系数有定要求,而且滤波电感不可能定得太大,输出直流电压的可控范围也就不宜定得过宽,在供电电压下限且输出额定电流时,输出额定电压(+ 12. 8 V) 上下有少许调节余量即可,这就要求制作者必须设计好三相电源变压器副边绕组。然后,在调试中调整电阻R3 和电位器RP 阻值,以最终满足预期的输出特性的要求。尽管本文绘出的仅是一个具体的实用电路,但该电路形式及其工作原理适用于所有移相触发晶闸管直流稳压器,应用时完全不必拘泥于这一个实用电路,尽可放开思路,凭借该题,充分发挥,以取得举一反三的设计成果。

结束语

综上所述不难发现,控制电路以及未示出的主电路中,没有设置过流和短路保护电路,也没有专设置具有过流保护功能的元器件,却能实实在在地实现过流及短路的可靠保护,而且这种保护电流的动作值可以在大范围内予以调节。这是一种没有过流保护环节却具有过流保护功能的晶闸管直流稳压器,是单结晶体管移相触发器和集成运算放大器合理组合的结果。通过这一实例可以得到一些启示:将一些元器件进行合理组合,可以产生意想不到的效果——各种元器件也都或多或少的具备这样那样的潜隐功能。从某种意义上来说,积极开发元器件潜隐功能的意义,甚至会超过开发新的元器件。这就好像将同样的文字进行新的组合,写出了另一篇意境深邃、妙趣横生的文章一样。愿本文能对传统元器件的更多新应用起到抛砖引玉的作用。

 


责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: 晶闸管

相关资讯