0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >设计应用 > 基于MSP430F149单片机和DS18B20温度传感器的智能安防系统电路设计

基于MSP430F149单片机和DS18B20温度传感器的智能安防系统电路设计

2018-05-31
类别:设计应用
eye 1105
文章创建人 拍明


单片机MSP430F149 为主控芯片,设计出一款高精度、高集成度、超低功耗的智能火灾安防报警系统。以环境温度、烟雾浓度作为判断火灾的依据,完成了对火灾的预警。主要由单片机控制模块、时钟模块、烟雾浓度测量模块、DS18B20 温度测量模块、声光报警模块、1602液晶显示模块和电源构成。并且该系统以MSP430F149 为下位机,完成数据采集、预处理以及对现场装置的控制,以 PC 机为上位机,完成各种复杂的数据处理和对单片机的控制。设计的智能火灾报警系统具有较高的可靠性、稳定性、准确度高,对不同类型的火灾都具有较高的灵敏度,达到了降低误报率的目的。

温度测量模块设计

设计中采用支持“一线总线”接口、抗干扰性强、外部电路简单、精确度高的DS18B20温度传感器对温度的实时测量。其中,DS18B20 管脚2 即DQ 接在MSP430F149 的P2.0 管脚,如图所示。

图 温度测量.png

图 温度测量

声光报警模块设计

蜂鸣器在微处理器判断为火灾时发出报警指示音。由于单片机的I/O 口驱动能力有限,选用PNP型晶体管2N5401 组成晶体管驱动电路来驱动压电式蜂鸣器。

图 声光报警模块图.png

图 声光报警模块图

1602液晶显示模块设计

液晶模块上显示时间、测量温度、烟雾浓度等参数,以便我们更加方便的读出目前温度值、烟雾浓度值。

图 1602 液晶显示模块图.png

图 1602 液晶显示模块图

本设计采用 MSP430F149 作为下位机,PC 机作为上位机,通过RS-232 将数据传输到PC 机上,我们可以更加方便的监测各个测量参数。电路图如下:

图 串口通信电路.png

图 串口通信电路

时钟模块设计

DS1302 是DALLAS 公司推出的涓流充电时钟芯片内含有一个实时时钟/日历和31 字节静态RAM 通过简单的串行接口与单片机进行通信实时时钟/日历电路提供秒、分、时、日、日期、月、年的信息每月的天数和闰年的天数可自动调整时钟操作可通过AM /PM 指示决定采用24 或12 小时格式。DS1302 与单片机之间能简单地采用同步串行的方式进行通信仅需用到三个口线RES 复位、I/O 数据线、SCLK 串行时钟。

图 时钟电路.png

图 时钟电路

烟雾浓度测量模块设计

本系统决定采用NIS-09C型离烟雾探测器,它是NEMOTO 公司专为检测烟雾而精心设计的新型探测器。内部使用了微量的放射性物质镅241,传感器本身被金属制电极所覆盖,放射性物质不会泄露。NIS-09C 属于低功耗、灵敏度高的探测器,适用于火灾报警系统中。火灾是一种在时间和空间上失去控制的燃烧所造成的灾害,由此引发的重大安全事故比比皆是,对人类生命财产和社会安全构成了极大的威胁。由此可见,对火灾进行准确、及时、有效地报警显得愈来愈重要,这是防火减灾的重要研究课题之一。该系统提高对火灾探测的快速性、准确性和对环境的适应能力,有效降低火灾误报的概率,提高了灵敏度和整个系统的智能化程度。

点评分析:

该系统以单片机MSP430F149 为核心,以环境温度、烟雾浓度作为判断火灾的依据,完成了对火灾的预警。主要由单片机控制模块、时钟模块、烟雾浓度测量模块、DS18B20 温度测量模块、声光报警模块、1602 液晶显示模块和电源构成。MSP430F149 是一种16 位的单片机,它具有集成度高,外围设备丰富、超低功耗等优点,在工业中有着广泛的应用。内部集成有8 路12 位A/D 转换器、片内看门狗定时器、一个硬件乘法器以及48 个I/O 引脚。当然,除了MSP430系列外还有很多处理器可供安防设计用,还望能与各位读者多交流。

【MSP430】

MSP430系列单片机是美国德州仪器(TI)1996年开始推向市场的一种16位超低功耗、具有精简指令集(RISC)的混合信号处理器(Mixed Signal Processor)。

MSP430单片机称之为混合信号处理器,是由于其针对实际应用需求,将多个不同功能的模拟电路、数字电路模块和微处理器集成在一个芯片上,以提供“单片机”解决方案。该系列单片机多应用于需要电池供电的便携式仪器仪表中。



MSP430.png



特点

处理能力强

MSP430系列单片机是一个16位的单片机,采用了精简指令集(RISC)结构,具有丰富的寻址方式(7 种源操作数寻址、4 种目的操作数寻址)、简洁的 27 条内核指令以及大量的模拟指令;大量的寄存器以及片内数据存储器都可参加多种运算;还有高效的查表处理指令。这些特点保证了可编制出高效率的源程序。

运算速度快

MSP430 系列单片机能在25MHz晶体的驱动下,实现40ns的指令周期。16位的数据宽度、40ns的指令周期以及多功能的硬件乘法器(能实现乘加运算)相配合,能实现数字信号处理的某些算法(如FFT等)。

超低功耗

MSP430 单片机之所以有超低的功耗,是因为其在降低芯片的电源电压和灵活而可控的运行时钟方面都有其独到之处。

首先,MSP430 系列单片机的电源电压采用的是1.8-3.6V 电压。因而可使其在1MHz 的时钟条件下运行时,芯片的电流最低会在165μA左右,RAM保持模式下的最低功耗只有0.1μA。

其次,独特的时钟系统设计。在 MSP430 系列中有两个不同的时钟系统:基本时钟系统、锁频环(FLL 和FLL+)时钟系统和DCO数字振荡器时钟系统。可以只使用一个晶体振荡器(32.768kHz)DT-26 OR DT-38,也可以使用两个晶体振荡器。由系统时钟系统产生 CPU 和各功能所需的时钟。并且这些时钟可以在指令的控制下,打开和关闭,从而实现对总体功耗的控制。

由于系统运行时开启的功能模块不同,即采用不同的工作模式,芯片的功耗有着显著的不同。在系统中共有一种活动模式(AM)和五种低功耗模式(LPM0~LPM4)。在实时时钟模式下,可达2.5μA ,在RAM 保持模式下,最低可达0.1μA 。

片内资源丰富

MSP430 系列单片机的各系列都集成了较丰富的片内外设。它们分别是看门狗(WDT)、模拟比较器A、定时器A0(Timer_A0)、定时器A1(Timer_A1)、定时器B0(Timer_B0)、UART、SPI、I2C、硬件乘法器、液晶驱动器、10位/12位ADC、16位Σ-Δ ADC、DMA、I/O端口、基本定时器(Basic Timer)、实时时钟(RTC)和USB控制器等若干外围模块的不同组合。其中,看门狗可以使程序失控时迅速复位;模拟比较器进行模拟电压的比较,配合定时器,可设计出A/D 转换器;16 位定时器(Timer_A 和 Timer_B)具有捕获/比较功能,大量的捕获/比较寄存器,可用于事件计数、时序发生、PWM等;有的器件更具有可实现异步、同步及多址访问串行通信接口可方便的实现多机通信等应用;具有较多的 I/O 端口,P0、P1、P2 端口能够接收外部上升沿或下降沿的中断输入;10/12位硬件 A/D 转换器有较高的转换速率,最高可达200kbps ,能够满足大多数数据采集应用;能直接驱动液晶多达 160 段;实现两路的 12 位D/A转换;硬件I2C串行总线接口实现存储器串行扩展;以及为了增加数据传输速度,而采用的DMA模块。MSP430 系列单片机的这些片内外设为系统的单片解决方案提供了极大的方便。

另外,MSP430 系列单片机的中断源较多,并且可以任意嵌套,使用时灵活方便。当系统处于省电的低功耗状态时,中断唤醒只需5μs。

方便高效的开发环境

MSP430 系列有 OTP 型、 FLASH 型和 ROM 型三种类型的器件,这些器件的开发手段不同。对于 OTP 型和 ROM 型的器件是使用仿真器开发成功之后烧写或掩膜芯片;对于 FLASH 型则有十分方便的开发调试环境,因为器件片内有 JTAG 调试接口,还有可电擦写的 FLASH 存储器,因此采用先下载程序到 FLASH 内,再在器件内通过软件控制程序的运行,由 JTAG 接口读取片内信息供设计者调试使用的方法进行开发。这种方式只需要一台 PC 机和一个 JTAG 调试器,而不需要仿真器和编程器。开发语言有汇编语言和C 语言。

家族

430x1xx系列

基于闪存或 ROM 的超低功耗 MCU,提供 8MIPS,工作电压为 1.8V - 3.6V,具有高达 60KB 的闪存和各种高性能模拟及智能数字外设。

超低功耗低至:

0.1μA RAM (保持模式) 0.7μA (实时时钟模式) 200μA/MIPS (工作模式) 在 6μs 之内快速从待机模式唤醒

器件参数:

闪存选项:1KB – 60KB ROM 选项:1KB – 16KB RAM 选项:512B – 10KB GPIO 选项:14、22、48 引脚 ADC 选项:10 和 12 位斜率 SAR 其它集成外设:模拟比较器、DMA、硬件乘法器、SVS、12 位 DAC

430F2xx系列

基于闪存的超低功耗 MCU,在 1.8V - 3.6V 的工作电压范围内性能高达 16MIPS。包含极低功耗振荡器 (VLO)、内部上拉/下拉电阻和低引脚数选择。

超低功耗低至:

0.1μA RAM( 保持模式) 0.3μA (待机模式) (VLO) 0.7μA (实时时钟模式) 220μA/MIPS (工作模式) 在 1μs 之内超快速地从待机模式唤醒

器件参数:

闪存选项:1KB – 120KB RAM 选项:128B – 8KB GPIO 选项:10、16、24、32、48、64 引脚 ADC 选项:10 和 12 位斜率 SAR、16 位 Σ-Δ ADC 其它集成外设:模拟比较器、硬件乘法器、DMA、SVS、12 位 DAC、运算放大器

430C3xx系列

旧款的 ROM 或 OTP 器件系列,工作电压为 2.5V - 5.5V,高达 32KB ROM、4MIPS 和 FLL。

超低功耗低至:

0.1μA RAM (保持模式) 0.9μA( 实时时钟模式) 160μA/MIPS (工作模式) 在 6μs 之内快速从待机模式唤醒

器件参数:

ROM 选项:2KB – 32KB RAM 选项:512B – 1KB GPIO 选项:14、40 引脚 ADC 选项:14 位斜率 SAR 其它集成外设:LCD 控制器、硬件乘法器

430x4xx系列

基于 LCD 闪存或 ROM 的器件系列,提供 8-16MIPS,包含集成 LCD 控制器,工作电压为 1.8V-3.6V,具有 FLL 和 SVS。低功耗测量和医疗应用的理想选择。

超低功耗低,与430x1xx系列完全一致

器件参数:

闪存/ROM 选项:4kB – 120KB RAM 选项:256B – 8KB GPIO 选项:14、32、48、56、68、72、80 引脚 ADC 选项:10 和 12 位斜率 SAR、16 位 Σ-Δ ADC 其它集成外设:LCD 控制器、模拟比较器、12 位 DAC、DMA、硬件乘法器、运算放大器、USCI 模块

430F5xx系列

新款基于闪存的产品系列,具有最低工作功耗,在 1.8V-3.6V 的工作电压范围内性能高达 25MIPS。包含一个用于优化功耗的创新电源管理模块。

超低功耗低至:

0.1μA RAM (保持模式) 2.5μA (实时时钟模式 )165μA/MIPS (工作模式) 在 5μs 之内快速从待机模式唤醒

器件参数:

闪存选项:高达 256KB RAM 选项:高达 16KB ADC 选项:10 和 12 位 SAR 其它集成外设:USB、模拟比较器、DMA、硬件乘法器、RTC、USCI、12 位 DAC

430G2553

低电源电压范围:1.8v至3.6v。

超低功耗 运行模式: 230μA (在1MHz 频率和2.2V 电压条件下)

待机模式: 0.5μA

关闭模式(RAM 保持): 0.1μA

5 种节能模式

· 用于模拟信号比较功能或者斜率模数(A/D) 转换的片载比较器

· 可在不到1μs 的时间里超快速地从待机模式唤醒

· 16 位精简指令集(RISC) 架构,62.5ns 指令周期时间

· 带内部基准、采样与保持以及自动扫描功能的10位200-ksps 模数(A/D) 转换器

· 基本时钟模块配置

– 具有四种校准频率并高达16MHz 的内部频率· 串行板上编程,

– 内部超低功耗低频(LF) 振荡器无需外部编程电压,

– 32kHz 晶振

– 外部数字时钟源· 具有两线制(Spy-Bi-Wire) 接口的片上仿真逻辑电路

· 两个16 位Timer_A,分别具有三个捕获/比较寄存路器

· 多达24 个支持触摸感测的I/O 引脚

【MSP430F149IPM】

MSP430F149IPM是TI公司设计生产的一款超低功耗的16位单片机。具有低电压、超低功耗;快速苏醒;具有片内比较器等特点。

MSP430F149IPM.png

规格

程序存储器类型: Flash

程序存储器大小: 60 KB

数据 RAM 大小: 2 KB

接口类型: SPI or UART or USART

最大时钟频率: 8 MHz

可编程输入/输出端数量: 48

定时器数量: 2

工作电源电压: 1.8 V to 3.6 V

最大工作温度: + 85 C

封装 / 箱体: LQFP

封装: Tube

最小工作温度: - 40 C

片上 ADC: 8-chx12-bit

特点

①低电压、超低功耗。工作电压3.6V~1.8V ,正常工作模式280μA@1MHz,2.2V,待机模式1.6μA,RAM数据保存的掉电模式下0.1μA。五级节电模式。

②快速苏醒,从待机模式下恢复工作,只需要不到6μS时间。

③16位精简指令集MCU,命令周期125nS。

④12位ADC,具有内部参考电压源,并且具有采样、保持、自动扫描等功能。具有12位的模数转换器可以得到很高的精度,并且省去了使用专门的模数转换器给设计电路板带来的麻烦。

⑤2个16位计数器。具有捕获、门限功能。

⑥具有片内比较器。

⑦支持ISP(在线系统编程),方便开发和项目升级。

⑧支持序列号,熔丝位烧写。方便简单。

⑨双串口

⑩支持超小型封装:64P-QFP、64P-QFN。

【DS18B20】

DS18B20是常用的数字温度传感器,其输出的是数字信号,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。 DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。

主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。、

工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

技术性能

1、技术性能描述:

①、 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

② 、测温范围 -55℃~+125℃,固有测温误差(注意,不是分辨率,这里之前

是错误的)1℃。

③、支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。

④、工作电源: 3.0~5.5V/DC (可以数据线寄生电源)

⑤ 、在使用中不需要任何外围元件

⑥、 测量结果以9~12位数字量方式串行传送

⑦ 、不锈钢保护管直径 Φ6

⑧ 、适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温

⑨、 标准安装螺纹 M10X1, M12X1.5, G1/2”任选

⑩ 、PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。

DS18B20+ 和 Maxim Integrated 信息

Manufactured by Maxim Integrated, DS18B20+ is a 温度传感器.

应用范围

该产品适用于冷冻库,粮仓,储罐,电讯机房,电力机房,电缆线槽等测温和控制领域。

轴瓦,缸体,纺机,空调,等狭小空间工业设备测温和控制。

汽车空调、冰箱、冷柜、以及中低温干燥箱等。

供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制。

型号规格编辑

型 号 测温范围 安装螺纹 电缆长度 适用管道

TS-18B20 -55~125 无 1.5 m

TS-18B20A -55~125 M10X1 1.5m DN15~25

TS-18B20B -55~125 1/2”G 接线盒 DN40~ 60

接线说明

接线方法

面对着平的那一面,左负右正,一旦接反就会立刻发热,有可能烧毁!同时,接反也是导致该传感器总是显示85℃的原因。实际操作中将正负反接,传感器立即发热,液晶屏不能显示读数,正负接好后显示85℃。另外,如果使用51单片机的话,那么中间那个引脚必须接上4.7K—10K的上拉电阻,否则,由于高电平不能正常输入/输出,要么通电后立即显示85℃,要么用几个月后温度在85℃与正常值上乱跳。

特点

独特的一线接口,只需要一条口线通信 多点能力,简化了分布式温度传感应用 无需外部元件 可用数据总线供电,电压范围为3.0 V至5.5 V 无需备用电源 测量温度范围为-55 ° C至+125 ℃ 。华氏相当于是-67 ° F到257华氏度 -10 ° C至+85 ° C范围内精度为±0.5 ° C

温度传感器可编程的分辨率为9~12位,温度转换为12位数字格式最大值为750毫秒,用户可定义的非易失性温度报警设置,应用范围包括恒温控制、工业系统、消费电子产品温度计、或任何热敏感系统

描述该DS18B20的数字温度计提供9至12位(可编程设备温度读数)。由于DS18B20是一条口线通信,所以中央微处理器与DS18B20只有一个一条口线连接。为读写以及温度转换可以从数据线本身获得能量,不需要外接电源。 因为每一个DS18B20的包含一个独特的序号,多个ds18b20s可以同时存在于一条总线。这使得温度传感器放置在许多不同的地方。它的用途很多,包括空调环境控制,感测建筑物内温设备或机器,并进行过程监测和控制。

DS18B20采用一线通信接口。因为一线通信接口,必须在先完成ROM设定,否则记忆和控制功能将无法使用。主要首先提供以下功能命令之一: 1 )读ROM, 2 )ROM匹配, 3 )搜索ROM, 4 )跳过ROM, 5 )报警检查。这些指令操作作用在没有一个器件的64位光刻ROM序列号,可以在挂在一线上多个器件选定某一个器件,同时,总线也可以知道总线上挂有有多少,什么样的设备。

若指令成功地使DS18B20完成温度测量,数据存储在DS18B20的存储器。一个控制功能指挥指示DS18B20的演出测温。测量结果将被放置在DS18B20内存中,并可以让阅读发出记忆功能的指挥,阅读内容的片上存储器。温度报警触发器TH和TL都有一字节EEPROM 的数据。如果DS18B20不使用报警检查指令,这些寄存器可作为一般的用户记忆用途。在片上还载有配置字节以理想的解决温度数字转换。写TH,TL指令以及配置字节利用一个记忆功能的指令完成。通过缓存器读寄存器。所有数据的读,写都是从最低位开始。

部件描述

存储器

DS18B20的存储器包括高速暂存器RAM和可电擦除RAM,可电擦除RAM又包括温度触发器TH和TL,以及一个配置寄存器。存储器能完整的确定一线端口的通讯,数字开始用写寄存器的命令写进寄存器,接着也可以用读寄存器的命令来确认这些数字。当确认以后就可以用复制寄存器的命令来将这些数字转移到可电擦除RAM中。当修改过寄存器中的数时,这个过程能确保数字的完整性。

高速暂存器RAM是由8个字节的存储器组成;。用读寄存器的命令能读出第九个字节,这个字节是对前面的八个字节进行校验。。

64-位光刻ROM

64位光刻ROM的前8位是DS18B20的自身代码,接下来的48位为连续的数字代码,最后的8位是对前56位的CRC校验。64-位的光刻ROM又包括5个ROM的功能命令:读ROM,匹配ROM,跳跃ROM,查找ROM和报警查找。

外部电源的连接

DS18B20可以使用外部电源VDD,也可以使用内部的寄生电源。当VDD端口接3.0V—5.5V的电压时是使用外部电源;当VDD端口接地时使用了内部的寄生电源。无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。

配置寄存器

配置寄存器是配置不同的位数来确定温度和数字的转化。

可以知道R1,R0是温度的决定位,由R1,R0的不同组合可以配置为9位,10位,11位,12位的温度显示。这样就可以知道不同的温度转化位所对应的转化时间,四种配置的分辨率分别为0.5℃,0.25℃,0.125℃和0.0625℃,出厂时以配置为12位。

温度的读取

DS18B20在出厂时以配置为12位,读取温度时共读取16位,前5个位为符号位,当前5位为1时,读取的温度为负数;当前5位为0时,读取的温度为正数。温度为正时读取方法为:将16进制数转换成10进制即可。温度为负时读取方法为:将16进制取反后加1,再转换成10进制即可。例:0550H = +85 度,FC90H = -55 度。

控制方法

DS18B20有六条控制命令,如表4.1所示:

表4.1 为DS18B20有六条控制命令

指 令 约定代码 操 作 说 明

温度转换 44H 启动DS18B20进行温度转换

读暂存器 BEH 读暂存器9字节二进制数字

写暂存器 4EH 将数据写入暂存器的TH、TL字节

复制暂存器 48H 把暂存器的TH、TL字节写到E2PROM中

重新调E2PROM B8H 把E2PROM中的TH、TL字节写到暂存器TH、TL字节

读电源供电方式 B4H 启动DS18B20发送电源供电方式的信号给主CPU

初始化

(1) 先将数据线置高电平“1”。

(2) 延时(该时间要求的不是很严格,但是尽可能的短一点)

(3) 数据线拉到低电平“0”。

(4) 延时750微秒(该时间的时间范围可以从480到960微秒)。

(5) 数据线拉到高电平“1”。

(6) 延时等待(如果初始化成功则在15到60微秒时间之内产生一个由DS18B20所返回的低电平“0”。据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。

(7) 若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。

(8) 将数据线再次拉高到高电平“1”后结束。

其时序如图4.13所示:

图4.13 初始化时序图

写操作

(1) 数据线先置低电平“0”。

(2) 延时确定的时间为15微秒。

(3) 按从低位到高位的顺序发送字节(一次只发送一位)。

(4) 延时时间为45微秒。

(5) 将数据线拉到高电平。

(6) 重复上(1)到(6)的操作直到所有的字节全部发送完为止。

(7) 最后将数据线拉高。

DS18B20的写操作时序图如图4.14所示。

图4.14 DS18B20的写操作时序图

读操作

(1)将数据线拉高“1”。

(2)延时2微秒。

(3)将数据线拉低“0”。

(4)延时3微秒。

(5)将数据线拉高“1”。

(6)延时5微秒。

(7)读数据线的状态得到1个状态位,并进行数据处理。

(8)延时60微秒。

DS18B20的读操作时序图如图4.15所示。

图1.15 DS18B20的读操作图

主要特征

1、DS18B20的主要特性

DS18B20的主要特性

1.1、适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数 据线供电

1.2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

1.3、 DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温

1.4、DS18B20在使用中不需要任何外围元件,全部 传感元件及转换电路集成在形如一只三极管的集成电路内

1.5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃

1.6、可编程 的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温

1.7、在9位分辨率时最多在 93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快

1.8、测量结果直接输出数字温度信号,以"一 线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力

1.9、负压特性:电源极性接反时,芯片不会因发热而烧毁, 但不能正常工作。

2、DS18B20的外形和内部结构

DS18B20内部结构主要由四部分组成:64位光刻ROM 、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的外形及管脚排列如下图1:

DS18B20引脚定义:

(1)DQ为数字信号输入/输出端;

(2)GND为电源地;

(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

图2:DS18B20内部结构图

图2:DS18B20内部结构图

3、DS18B20工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。高温度系数晶振 随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对 低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重 新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即 为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

图3:DS18B20测温原理框图

图3:DS18B20测温原理框图

DS18B20有4个主要的数据部件:

(1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位 (28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用 是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

(2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以 0.0625℃/LSB形式表达,其中S为符号位。

表1: DS18B20温度值格式表

表1: DS18B20温度值格式表

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0, 这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际 温度。 例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FE6FH,-55℃的数字输出为FC90H 。

表2: DS18B20温度数据表

表2: DS18B20温度数据表

(3)DS18B20温度传感器的存储器 DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器 TH、TL和结构寄存器。

(4)配置寄存器 该字节各位的意义如下:

表3:配置寄存器结构

TM

R1

R0

1

1

1

1

1


低五位一直都是"1",TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用 户不要去改动。R1和R0用来设置分辨率,如下表所示:(DS18B20出厂时被设置为12位)

表4:温度分辨率设置表


R1

R0

分辨率

温度最大转换时间

0

0

9位

93.75ms

0

1

10位

187.5ms

1

0

11位

375ms

1

1

12位

750ms

4、高速暂存存储器高速暂存存储器由9个字节组成,其分配如表5所示。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在 高速暂存存储器的第0和第1个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式如表1所示。对应的温度计算: 当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变为原码,再计算十进制值。表 2是对应的一部分温度值。第九个字节是 冗余检验字节。

表5:DS18B20暂存寄存器分布

寄存器内容

字节地址

温度值低位 (LS Byte)

0

温度值高位 (MS Byte)

1

高温限值(TH)

2

低温限值(TL)

3

配置寄存器

4

保留

5

保留

6

保留

7

CRC校验值

8

根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行 复位操作,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后 释放,当DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。

表6:ROM指令表

指 令

约定代码

功 能

读ROM

33H

读DS1820温度传感器ROM中的编码(即64位地址)

符合 ROM

55H

发出此命令之后,接着发出 64 位 ROM 编码,访问单总线上与该编码相对应的 DS1820 使之作出响应,为下一步对该 DS1820 的读写作准备。

搜索 ROM

0FOH

用于确定挂接在同一总线上 DS1820 的个数和识别 64 位 ROM 地址。为操作各器件作好准备。

跳过 ROM

0CCH

忽略 64 位 ROM 地址,直接向 DS1820 发温度变换命令。适用于单片工作。

告警搜索命令

0ECH

执行后只有温度超过设定值上限或下限的片子才做出响应。

表6:RAM指令表

指 令

约定代码

功 能

温度变换

44H

启动DS1820进行温度转换,12位转换时最长为750ms(9位为93.75ms)。结果存入内部9字节RAM中。

读暂存器

0BEH

读内部RAM中9字节的内容

写暂存器

4EH

发出向内部RAM的3、4字节写上、下限温度数据命令,紧跟该命令之后,是传送两字节的数据。

复制暂存器

48H

将RAM中第3 、4字节的内容复制到EEPROM中。

重调 EEPROM

0B8H

将EEPROM中内容恢复到RAM中的第2、3字节。

读供电方式

0B4H

读DS1820的供电模式。寄生供电时DS1820发送“ 0 ”,外接电源供电 DS1820发送“ 1 ”。

5、DS18B20的应用电路DS18B20测温系统具有测温系统简单、测温精度高、连接方便、占用口线少等优点。下面就是DS18B20几个不同应用方式下的 测温电路图:

5.1、DS18B20寄生电源供电方式电路图如下面图4所示,在寄生电源供电方式下,DS18B20从单线信号线上汲取能量:在信号线DQ处于高电平期间把能量储存在内部 电容里,在信号线处于低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)充电。

独特的寄生电源方式有三个好处:

1)进行远距离测温时,无需本地电源

2)可以在没有常规电源的条件下读取ROM

3)电路更加简洁,仅用一根I/O口实现测温

要想使DS18B20进行精确的温度转换,I/O线必须保证在温度转换期间提供足够的能量,由 于每个DS18B20在温度转换期间工作电流达到1mA,当几个温度传感器挂在同一根I/O线上进行多点测温时,只靠4.7K上拉电阻就无法提供足够的 能量,会造成无法转换温度或温度误差极大。

因此,图4电路只适应于单一温度传感器测温情况下使用,不适宜采用电池供电系统中。并 且工作电源VCC必须保证在5V,当电源电压下降时,寄生电源能够汲取的能量也降低,会使温度误差变大。

DS18B20

5.2、DS18B20寄生电源强上拉供电方式电路图改进的寄生电源供电方式如下面图5所示,为了使DS18B20在动态转换周期中获得足够的电流供应,当进行温度转换或拷贝到 E2存储器操作时,用MOSFET把I/O线直接拉到VCC就可提供足够的电流,在发出任何涉及到拷贝到E2存储器或启动温度转换的指令后,必须在最 多10μS内把I/O线转换到强上拉状态。在强上拉方式下可以解决电流供应不走的问题,因此也适合于多点测温应用,缺 点就是要多占用一根I/O口线进行强上拉切换。

DS18B20的VDD引脚

注意:在图4和图5寄生电源供电方式中,DS18B20的VDD引脚必须接地

5.3、DS18B20的外部电源供电方式

在外部电源供电方式下,DS18B20工作电源由VDD引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证 转换精度,同时在总线上理论可以挂接任意多个DS18B20传感器,组成多点测温系统。注意:在外部供电的方式下,DS18B20的GND引脚不能悬空 ,否则不能转换温度,读取的温度总是85℃。

图6:外部供电方式单点测温电路

图6:外部供电方式单点测温电路

图7:外部供电方式的多点测温电路图

图7:外部供电方式的多点测温电路图

外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度 监控系统。站长推荐大家在开发中使用外部电源供电方式,毕竟比寄生电源方式只多接一根VCC引线。在外接电源方式下, 可以充分发挥DS18B20宽电源电压范围的优点,即使电源电压VCC降到3V时,依然能够保证温度量精度。

6、DS1820使用中注意事项

DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:

6.1、较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此 ,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对 DS1820操作部分最好采用汇编语言实现。

6.2、在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个 DS1820,在实际应用中并非如此。当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时 要加以注意。

6.3、连接DS1820的总线电缆是有长度限制的。试验中,当采用普通信号电缆传输长度超过50m时,读取的 测温数据将发生错误。当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正 常通讯距离进一步加长。这种情况主要是由总线分布电容使信号波形产生畸变造成的。因此,在用DS1820进行长距离测温系统设计时要充分考 虑总线分布电容和阻抗匹配问题。

6.4、在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS1820的返回信号,一旦 某个DS1820接触不好或断线,当程序读该DS1820时,将没有返回信号,程序进入死循环。这一点在进行DS1820硬件连接和软件设计时也要给予 一定的重视。 测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接地。




责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯