0 卖盘信息
BOM询价
您现在的位置: 首页 > 技术方案 >LED应用 > LED照明设备浪涌保护的原因以及解决方案

LED照明设备浪涌保护的原因以及解决方案

来源: Littelfuse
2018-04-02
类别:LED应用
eye 245
文章创建人 拍明

  Timothy Patel在美国安全试验所(UL)担任测试和认证服务后,于2013年加入Littelfuse。他目前的职责包括开发市场营销材料,管理新产品发布的营销活动,为新产品创意进行市场研究和可行性分析。他总结了LED照明设备浪涌保护的原因以及解决方案,以供参考。

  世界各地的城市正在从高强度放电灯转向LED路灯。但是,LED路灯的安装成本非常高,规划人员必须能够在合理的时间内根据LED的瓦数较低的要求,较低的维护成本和较长的使用寿命获得投资回报。为防止LED过早失效,尤其是由于雷电引起的浪涌,耐用性和可靠性至关重要。

  若想保护户外LED照明设备免受雷电感应浪涌的影响,需要将高电压/电流瞬态干扰从照明器材的敏感电子设备中转移出去。室外LED照明设备中会使用各种浪涌保护器件(SPD),以抑制浪涌能量并将浪涌影响降至最低。LED照明设备制造商依赖各种浪涌保护器件(SPD),包括精心选择的熔断器,金属氧化物压敏电阻(MOV)和瞬态电压抑制(TVS)二极管,以满足与过压瞬态有关的重要法规和安全标准。

  为了防止浪涌能量引起的损坏,提高可靠性,减少维护,延长LED的使用寿命,强大的浪涌抑制电路至关重要。图一展示了集成在路灯浪涌保护电路中的各种元器件。

LED路灯保护的元器件.png

  图一 LED路灯保护的元器件

  尽管一些LED灯具在电源装置中嵌入了浪涌保aaa护装置,但电路保护装置制造商通常建议将浪涌保护电路与灯具电源分开。通过这种方式,灯具制造商可以通过安装不同的浪涌保护模块来满足不同的浪涌电平要求,以及基于雷击频率数据设计合理的浪涌保护的灯具。

  MOV以响应时间快,浪涌能量处理能力强,尺寸紧凑,成本效益高等方面的特点被广泛应用于浪涌保护电路中。然而,在MOVs吸收一定数量的冲击后,它们将开始退化,不能再提供与全新MOV一样的浪涌保护。当原始模块达到其使用寿命时,具有独立特性的浪涌保护模块可以方便地进行更换。

  MOV技术提供了一种经济实惠且有效的方法来抑制电源和其他应用中的瞬变,例如通常位于LED驱动器前面的SPD模块。它们设计用于在几微秒内钳制过压瞬变,但是当内置于SPD模块时,MOV可能会受到由于中性线损坏或安装接线错误而导致的临时过压的情况。这些条件可能会严重影响MOV,并导致热失控,烟雾,过热,甚至可能导致火灾。强大的SPD设计具有热隔离功能,可保护MOV避免热失控。

  如前所述,在暴露于大浪涌或几个小的浪涌之后,MOV倾向于稳定地劣化,这会导致MOV漏电流的增加。即使在正常情况下,这种退化也会增加MOV的温度。 MOV旁边的热熔断器(图二)可用于检测MOV温度持续恶化时的温升。当MOV达到其使用寿命时,热熔断器将会断开电路,从电路中去除退化的MOV,并防止其造成灾难性的故障。

热熔断器可以防止恶化的MOV发生灾难性故障.png

  图二 热熔断器可以防止恶化的MOV发生灾难性故障

  一旦热熔断器将MOV从电路中移除,SPD模块不再提供浪涌抑制。因此,提供适当的指示是非常重要,以便维护人员知道SPD不再工作,并且需要更换。

  LED(LightingEmittingDiode)照明即是发光二极管照明,是一种半导体固体发光器件。它是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿色的光,在此基础上,利用三基色原理,添加荧光粉,可以发出任意颜色的光。利用LED作为光源制造出来的照明器具就是LED灯具。LED照明灯具里,反射用途的LED照明灯具可以完全胜任于任何场合,大面积室内照明还不成熟。

  LED光源的LED是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-V特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光。

  假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

  理论和实践证明,光的峰值波长λ与发光区域的半导体材料带隙Eg有关,即 λ≈1240/Eg(mm)

  式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。

  (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。

  (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。

  (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。

  (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。

  不改变材质的前提下,在LED的极限范围内,提高亮度的手段就是提高电流,随着电流升高,LED发热量会剧增。使用过LED光源便携投影机的,或微投的朋友,一定都深有体会,LED光源的投影机,非常热,而且普遍会有明显的噪音。这些产品,机身小是一方面,关键还是其自身发热量较大所致。

  随着功率的增加,LED的散热问题显得越来越突出,大量实际应用表明,LED不能加大输入功率的基本原因,是由于LED在工作过程中会放出大量的热,使管芯结温迅速上升,热阻变大。输入功率越高,发热效应越大。温度的升高将导致器件性能变化与衰减,非辐射复合增加,器件的漏电流增加,半导体材料缺陷增长,金属电极电迁移,封装用环氧树脂黄化等等,严重影响LED的光电参数。甚至使功率LED失效。因此,对于LED器件,降低热阻与结温、对发光二极管的热特性进行研究显得日趋重要。

  可靠性

  LED驱动电源寿数偏低的一个重要原因是驱动电源所需的铝电解电容的寿数缺乏,首要原因是长时间作业时LED灯内部的环境温度很高,致使铝电解电容的电解液很快被耗干,寿数大为缩短,通常只能作业5千小时左右。而LED光源的寿数是5万小时,因而铝电解电容的作业寿数就成为了LED驱动电源寿数的短肋。

  如今有些供货商为了处理这个难题,创造了无铝电解电容的LED驱动电源计划。但并不是所有的LED驱动电源供货商都拥护这种做法。陈嵘指出:“当前量产的LED驱动电源中没有一款是选用了无电解电容的驱动计划,由于没有它的话,许多试验规范通不过,如EMI测验和无闪烁测验。”

  而选用铝电解电容的LED驱动电源计划很简单通常以上测验, pcb抄板若是换成薄膜电容陶瓷电容钽电容,情况如何呢?薄膜电容要到达一样的电容量(通常为100-220uF),体积就会很大,并且本钱也太高,陶瓷电容通常容量太小,如用多个陶瓷电容完成这么大的容量,占板面积和本钱都太大,钽电容要具有这么大容量,一是太贵,而是耐压太低达不到需求,因而换成其它任何品种的电容,基本上不是体积太大,就是太贵,如为了这些缺陷换成容量较小的电容,消除纹波的作用就没有那么好,许多出口产品所需的严厉认证测验目标就无法经过,因而当前高质量的LED驱动电源仍是遍及选用铝电解电容。

  许多供货商声称的无电解电容LED驱动电源计划,很可能仅仅去掉了AC输入端的铝电解电容,恒流输出端的铝电解电容应该是很难去掉或代替的。

  一家公司推出了一款可TRIAC调光的内嵌了驱动电源的13WLED灯泡,这款根据SSL2102的驱动电源计划选用了铝电解电容。当笔者问及该灯泡的作业寿数时,铝电解电容的作业寿数难题肯定会影响到整个LED灯泡的寿数,但能够采纳一些物理方法来减轻这个难题,如将铝电解电容在PCB上方位接近灯尾,通常来说,最接近LED光源有些的温度最高,可到达100-200℃,散热金属外壳有些其次,通常为100℃左右,灯尾有些最低,通常为70℃左右,因而只需注重把铝电解电容的方位接近灯尾,其寿数就不会衰减得太凶猛。咱们的试验标明,它的寿数还可到达1万小时左右,相当于10年使用时间,这关于通常家庭用户来说,十年换一次LED灯泡基本上是能够承受的。

  绿色环保

  不含汞、铅等对环境污染很大的重金属,发光时不会产生紫外线,因此LED照明不会象传统的灯具那样有很多蚊虫围绕在光源旁使环境变得更加干净卫整洁;金属壳恒流驱动的创新设计使产品电能转换成光效率非常高。

  独特优势

  (一)节约能源:LED的光谱几乎全部集中于可见光频段,其发光效率可达80―90%。笔者还将LED灯与普通白炽灯、螺旋节能灯及T5三基色荧光灯做了一番比较,结果显示:普通白炽灯的光效为12lm/w,寿命小于2000小时,螺旋节能灯的光效为60lm/w,寿命小于8000小时,T5荧光灯则为96Alm/w,寿命大约为10000小时,而直径为5毫米的白光LED为20―28lm/w,寿命可大于100000小时。有人还预测,未来的LED寿命上限将无穷大。

  一般人都认为,节能灯可节能4/5是伟大的创举,但LED比节能灯还要节能1/4,这是固体光源更伟大的改革。除此之外,LED还具有其他优势,光线质量高,基本上无辐射,属于典型的绿色照明光源;可靠耐用,维护费用极为低廉等等。正因为LED具有以上其他固体光源还无法匹敌的特点,10年后LED将是照明行业的主流光源。

  (二)安全环保:LED的工作电压低,多为1.4―3V;普通LED工作电流仅为10mA,超高亮度的也不过1A。LED在生产过程中不要添加“汞”,也不需要充气,不需要玻璃外壳,抗冲击性好,抗震性好,不易破碎,便于运输,非常环保,被称为”绿色能源”。

  (三)使用寿命长:LED体积小、重量轻,外壳为环氧树脂封装,不仅可以保护内部芯片,还具有透光聚光的能力。LED使用寿命普遍在5万―10万小时之间,因为LED是半导体器件,即使是频繁的开关,也不会影响到使用寿命。当今家用照明主要使用的是白炽灯、荧光灯及节能荧光灯。

  (四)响应速度快:LED的响应频率fτ与注入少数载流子的寿命τmc有关,如GaAs材料制成的LED,其τmc一般在1―10ns 范围内,则响应频率约为16―160MHz,这样高的响应频率对于显示6.5MHz的视频信号来说已经足够了,这也是实现视频 LED大屏幕的关键因素之一。

  LED响应时间最低的已达1微秒,一般的多为几个毫秒,约为普通光源响应时间的1/100。因此可用于很多高频环境,如汽车刹车灯或状态灯,可以缩短车后车辆的刹车时间,从而提高安全性。

  (五)发光效率高:白炽灯、卤钨灯的光效为12-24lm/w(流明/瓦),荧光灯的光效为50―70lm/w,钠灯的光效为90―140lm/w,大部分的耗电变成热量损耗。而LED的光效经改善后可达到50―200lm/w,且光的单色性好、光谱窄,无需过滤就可直接发出有色可见光。

  (六)LED元件的体积小:更加便于各种设备的布置和设计,而且能够更好地实现夜景照明中“只见灯光不见光源”的效果。

  (七)LED光线能量集中度高:集中在较小的波长窗口内,纯度高。

  (八)LED发光指向性强:亮度衰减比传统光源低很多。

  (九)LED低压直流电即可驱动:具有负载小、干扰弱的优点,对使用环境要求较低。

  (十)可较好控制发光光谱组成:从而能够很好地用于博物馆以及展览馆中的局部或重点照明。

  (十一)可控制半导体发光层、半导体材料禁止带幅的大小:从而发出各种颜色的光线,且彩度更高。

  (十二)显色性高:不会对人的眼睛造成伤害。

  照明规范

  随着LED陆续导入室内、室外照明市场,LED照明价格也大幅下降,但品质参差不齐也导致问题丛生,据指出,各地陆续订定LED照明规范,多项强制性照明标准将从2012年起上路,将可望加速淘汰劣质品的恶性竞争,进而带动LED照明市场洗牌效应。

  由于LED照明应用日趋普遍及多元,台湾经济部标准局陆续制定多项LED照明标准,继LED路灯规范制定脚步领先世界各国公布,2010年底又颁布3项常见LED室内灯标准,包括LED T8直管灯管、LED投光灯以及轻钢架灯(含平板灯)等,业界指出,尽管相关标准规范已定,但LED路灯经过多年推广,到2012年才可望扩大安装,由于政府导入缓慢加上预算编列作业,估计要到2013~2014年才可望释出采购标案。

  尽管大陆LED产业发展如火如荼,但由于各地区气候环境差异过大,因此产业标准尚未进入国家标准项目,由各省份各自主导推动地区性LED照明标准建立,不过据指出,大陆发改委将通过LED照明的技术规范,以室内LED筒灯为优先项目,预料在技术规范定案后,2012年在大陆十二五规划推动下,中央公布LED室内照明的补助财政方案将可望扩大实施。

  至于LED照明产品输入欧盟必须通过CE认证,而考量电磁辐射对人体可能会造成危害,欧盟也宣布于2013年起,强制执行人体电磁辐射安全规范标准。

  随着美国环保署于2011年10月公布新版固态照明灯具及光源产品上市规范,业界指出,备受关注的LM-80的光衰测试,预计将从2012年4月起强制实施,在新规范上路后,未来北美市场灯具厂商将优先采购通过LM-80验证的LED产品,对于未受验证的台湾LED封装及晶粒厂,日后进军美国市场恐将遭受阻碍。

  由于LM-80的光衰验证需经过6,000小时测试,耗时长达6~8个月,部分LED业界认为,LED产品规格及技术日新月异,在经过长达数个月后,LED照明验证标准可能又将改变,故对此认证仍抱持存疑,不过工研= 表示,LM-80被视为进入美国市场的入场券,厂商必须出具LM-80(LED流明维持率)试验的报告证书,才能取得能源之星标章,北美照明工程学会(IES)也已订出LM-80的光衰减检测标准,不仅为LED应用产品提供量测标准,也为消费者提供品质保证,将成为全球共通的检测标准。



责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: LED照明设备

相关资讯