0 卖盘信息
BOM询价
您现在的位置: 首页 > 技术方案 >健康医疗 > 富威基于Silicon Labs 低功耗MCU C8051F960应用于无端医疗照护解决方案

富威基于Silicon Labs 低功耗MCU C8051F960应用于无端医疗照护解决方案

来源: elecfans
2021-10-28
类别:健康医疗
eye 14
文章创建人 拍明

原标题:富威C8051F9XX无端医疗照护解决方案

  富威集团推出Silicon Labs 低功耗MCU C8051F9XX应用于无端医疗照护解决方案。该系列芯片已被广泛应用于RFID标签、水气表计量、传感器接口、能量采集、报警系统、烟雾检测以及掌上型医疗照护系统等。C8051F9XX是目前业内最省电的MCU,最低待机功耗为10nA,有效增加电池寿命。C8051F9XX内置12Bit AD,可以完全满足医疗系统的AD要求,大大降低客户的成本。

  

image.png


  在一般操作模式中,8位F9xx微控制器可达到业界最低的消耗电流,以提供嵌入式市场中最低的系统层级功耗。此一电源效率极佳的微控制器提供最低的操作模式电流消耗(160µA/MHz),可大幅节省系统运作时的电力。在休眠模式中,此款微控制器所消耗的电流也是业界最低的,不论是有实时频率和低压侦测电路(300nA)操作,或是无实时频率和低压侦测电路(10nA) 操作的情况下,均能保持RAM全部内容。

  远程自主性健康管理系统

  本项目成功的建构了一套智能型实时远程医疗看护系统。利用C8051F9XX采集血压和血氧情况,结合当下最流行的Iphone作为数据的接收器,提供实时的监视、自动建文件储存以及历史数据预览等,Iphone亦可以透过网络将数据实时传输到远程服务器上,达到远程实时生理监视与分析,服务器亦具备建档储存以及分析报告输出等。本项目并成功应用超低功耗MCU,实时检控,达到「生理监视于无形,健康看护于生活」的目的。

  

image.png


  长期照护体系远程健康照护服务

  长期照护体系远程健康照护服务包括家居模式、小区模式与机构模式三类。家居模式以慢性病照护为服务对象,经长期照护服务之赡养或养护机构评估,以远程照护进行健康管理;机构模式以长期照护服务之赡养或养护机构内,受照护之病友为服务对象,提供血压、心跳、血糖、及心电图等远程生理量测、异常值提醒、健康管理、疾病风险评估分析与早期预警、远程视频、卫教与关怀、转介医疗等服务。

  

image.png


  C8051F9XX特点

  更高电压转换效率

  为了增加CMOS电路效能并降低其功耗,芯片设计人员通常采用最小尺寸并且实用的组件来构建整合电路。一般情况下,嵌入式处理器和RF收发器采用0.18µm、0.13µm甚至90nm设计。降低组件功率消耗的一个关键指标是降低内部工作电压,进而降低CVf开关损耗。

  即使电池供电组件支持3.6V供电电压,组件通常也可以在很低的内部电压下工作。

  市场上几乎所有组件内部都整合低压降稳压器(LDO),当输入电压为3.6V时,调节输出一个很低的电压值,通常为1.8V或更低。换句话说,一个输入电压为3.6V的线性稳压器输出电压为1.8V,将产生50%转换效率。显然,随着输出电压的下降,这种效率将变得更差。

  更高阶的嵌入式控制器,例如图2中C8051F960 MCU,整合了比LDO控制器效率更高的开关型稳压器。大多数情况下,此组件开关效率可高达85%,可以降低来自电池的总体电流并延长电池寿命。

  

image.png


  采用这种方法,可以大幅降低当前RX功率安排。也就是说,无线电接收器所消耗的电池电流大约是使用DC-DC降压转换器(而不仅仅是LDO)的62.5%。采用这种方法的实际结果是降低了RX电流功耗安排。

  

image.png


  随着这个改变,我们已经接近满足新RX功耗安排要求(例如图3所示:从30%降至19%,尽管目标是降至18%)。接下来,我们有必要继续优化系统中的其他运行模式。

  更低睡眠模式功耗

  通常,电池供电仪表99.9%的时间处于低功耗睡眠模式。因此,尽可能降低睡眠模式电路的功耗就变得非常重要。几年前,透过使用32.768 kHz晶体在3.6V电压下驱动低功耗唤醒时间,最低可至大约1µA电流消耗。随着进一步优化和改进,如今在同样电压下组件在使用相同功能时仅需大约700nA。虽然最终的节约值(net savings)仅300nA,但实际上该节约完全有效,可以从功率安排中直接减去此数值。

  

image.png


  采用低功耗睡眠模式组件,可以将睡眠模式安排从先前的8%降低到5%(如图4所示),即可达到设计目标。然而,这仅是达成目标,并未超过目标,仍需要做进一步改善以达成整体的设计目标。最后的一个重点是如何降低工作模式功耗。


责任编辑:David

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯

方案推荐
基于MC33771主控芯片的新能源锂电池管理系统解决方案

基于MC33771主控芯片的新能源锂电池管理系统解决方案

AMIC110 32位Sitara ARM MCU开发方案

AMIC110 32位Sitara ARM MCU开发方案

基于AMIC110多协议可编程工业通信处理器的32位Sitara ARM MCU开发方案

基于AMIC110多协议可编程工业通信处理器的32位Sitara ARM MCU开发方案

基于展讯SC9820超低成本LTE芯片平台的儿童智能手表解决方案

基于展讯SC9820超低成本LTE芯片平台的儿童智能手表解决方案

基于TI公司的AM437x双照相机参考设计

基于TI公司的AM437x双照相机参考设计

基于MTK6580芯片的W2智能手表解决方案

基于MTK6580芯片的W2智能手表解决方案