0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >行业趋势 > 双向晶闸管的工作原理与过压电流保护电路图

双向晶闸管的工作原理与过压电流保护电路图

2017-07-04
类别:行业趋势
eye 673
文章创建人 拍明
       双向晶闸管工作原理:双向可控硅具有两个方向轮流导通、关断的特性。双向可控硅实质上是两个反并联的单向可控硅,是由NPNPN五层半导体形成四个PN结构成、有三个电极的半导体器件。主电极的构造是对称的(都从N层引出),它的电极不像单向可控硅那样分别叫阳极和阴极,把与控制极相近的叫做第一电极A1,另一个叫做第二电极A2。双向可控硅的主要缺点是承受电压上升率的能力较低。这是双向可控硅在一个方向导通结束时,硅片在各层中的载流子还没有回到截止的,采取相应的保护措施。双向可控硅元件主要用于交流控制电路,如温度控制、灯光控制、防爆交流开关以及直流电机调速和换向等电路。

下面讲一下可控硅的工作原理:

1、可控硅元件的结构

不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN(J1J2J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。

2、 工作原理

可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示

当阳极A加上正向电压时,BG1BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。

由于BG1BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。

由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

QQ截图20170704113903.jpg

1)反向特性

当控制极开路,阳极加上反向电压时(见图3)J2结正偏,但J1J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO反向转折电压。此时,可控硅会发生永久性反向

2)正向特性

当控制极开路,阳极上加上正向电压时(见图4)J1J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压

4 阳极加正向电压

由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。进入N1区的电子与由P1区通过J1结注入N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。

这时J1J2J3三个结均处于正偏,可控硅便进入正向导电状态---通态,此时,它的特性与普通的PN结正向特性相似,见图2中的BC

2、 触发导通

在电力电子行业经常用到晶闸管,如进相器、中频炉等,经常做维修的朋友都知道晶闸管有时会烧坏,那为什么烧坏呢?主要原因就是过压过流击穿,造成过压过流的原因有时是负荷变化引起的,有时是操作者错误的操作顺序引起的,有时是晶闸管的保护电路不合适引起的。本文主要讨论晶闸管的保护电路以供朋友们选择。

晶闸管的保护电路,大致可以分为两种情况:一种是在适当的地方安装保护器件,例如,R—C阻容吸收回路、限流电感、快速熔断器、压敏电阻或硒堆等。再一种则是采用电子保护电路,检测设备的输出电压或输入电流,当输出电压或输入电流超过允许值时,借助整流触发控制系统使整流桥短时内工作于有源逆变工作状态,从而抑制过电压或过电流的数值。

晶闸管过压过流保护电路图

.晶闸管的过流保护

晶闸管设备产生过电流的原因可以分为两类:一类是由于整流电路内部原因, 如整流晶闸管损坏, 触发电路或控制系统有故障等; 其中整流桥晶闸管损坏类较为严重, 一般是由于晶闸管因过电压而击穿,造成无正、反向阻断能力,它相当于整流桥臂发生永久性短路,使在另外两桥臂晶闸管导通时,无法正常换流,因而产生线间短路引起过电流.另一类则是整流桥负载外电路发生短路而引起的过电流,这类情况时有发生,因为整流桥的负载实质是逆变桥, 逆变电路换流失败,就相当于整流桥负载短路。另外,如整流变压器中心点接地,当逆变负载回路接触大地时,也会发生整流桥相对地短路。

对于第一类过流,即整流桥内部原因引起的过流,以及逆变器负载回路接地时,可以采用第一种保护措施,最常见的就是接入快速熔短器的方式。见图1。快速熔短器的接入方式共有三种,其特点和快速熔短器的额定电流见表1

1:快速熔短器的接入方法

2. 对于第二类过流,即整流桥负载外电路发生短路而引起的过电流,则应当采用电子电路进行保护。常见过流保护原理图如下

2:过流保护原理图

.晶闸管的过压保护

晶闸管设备在运行过程中,会受到由交流供电电网进入的操作过电压和雷击过电压的侵袭。同时,设备自身运行中以及非正常运行中也有过电压出现。

1.过电压保护的第一种方法是并接R—C阻容吸收回路,以及用压敏电阻或硒堆等非线性元件加以抑制。见图3和图4

2. 过电压保护的第二种方法是采用电子电路进行保护。常见的电子保护原理图如下:

5:过压保护原理图

.电流上升率、电压上升率的抑制保护

1.电流上升率di/dt的抑制

晶闸管初开通时电流集中在靠近门极的阴极表面较小的区域,局部电流密度很大,然后以0.1mm/s的扩展速度将电流扩展到整个阴极面,若晶闸管开通时电流上升率di/dt过大,会导致PN结击穿,必须限制晶闸管的电流上升率使其在合适的范围内。其有效办法是在晶闸管的阳极回路串联入电感。如下图:

6:串联电感抑制回路

2.电压上升率dv/dt的抑制

加在晶闸管上的正向电压上升率dv/dt也应有所限制,如果dv/dt过大,由于晶闸管结电容的存在而产生较大的位移电流,该电流可以实际上起到触发电流的作用,使晶闸管正向阻断能力下降,严重时引起晶闸管误导通。

为抑制dv/dt的作用,可以在晶闸管两端并联R—C阻容吸收回路。如下图:

7:并联R—C阻容吸收回路

晶闸管过压过流保护主要就是以上这些电路图,做好以上这些保护电路,设备的故障率会很大降低.

 


责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: 晶闸管

相关资讯