0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >设计应用 > 基于LM35温度传感器的高精度恒温控制系统

基于LM35温度传感器的高精度恒温控制系统

2018-02-02
类别:设计应用
eye 579
文章创建人 拍明


LM35温度传感器

LM35 是由Naonal Semiconductor 所生产的温度传感器,其输出电压为摄氏温标。LM35是一种得到广泛使用的温度传感器。由于它采用内部补偿,所以输出可以从0℃开始。LM35有多种不同封装型式。在常温下,LM35 不需要额外的校准处理即可达到 ±1/4℃的准确率。

图片.png

分类介绍

其电源供应模式有单电源与正负双电源两种,其引脚如图一所示,正负双电源的供电模式可提供负温度的量测;两种接法的静止电流-温度关系,在静止温度中自热效应低(0.08℃),单电源模式在25℃下静止电流约50μA,工作电压较宽,可在4—20V的供电电压范围内正常工作非常省电。

工作电压4~30V,在上述电压范围以内,芯片从电源吸收的电流几乎是不变的(约50μA),所以芯片自身几乎没有散热的问题。这么小的电流也使得该芯片在某些应用中特别适合,比如在电池供电的场合中,输出可以由第三个引脚取出,根本无需校准。

目前,已有两种型号的LM35可以提供使用。LM35DZ输出为0℃~100℃,而LM35CZ输出可覆盖-40℃~110℃,且精度更高,两种芯片的精度都比LM35高,不过价格也稍高。

图片.png

规格参数

1、工作电压:直流4~30V;

2、工作电流:小于133μA

3、输出电压:+6V~-1.0V

4、输出阻抗:1mA负载时0.1Ω;

5、精度:0.5℃精度(在+25℃时);

6、漏泄电流:小于60μA;

7、比例因数:线性+10.0mV/℃;

8、非线性值:±1/4℃;

9、校准方式:直接用摄氏温度校准;

10、额定使用温度范围:-55~+150℃。

11、引脚说明:①电源负GND;②电源正VCC;③信号输出S;

传感器参数

供电电压35V到-0.2V

输出电压6V至-1.0V

输出电流10mA

指定工作温度范围

LM35A -55℃ to +150℃

LM35C, LM35CA -40℃ to +110℃

LM35D 0℃ to +100℃

基于LM35温度传感器的高精度恒温控制系统

温度控制广泛应用于人们的生产和生活中,如大型饲养场、人工气候、无土栽培等许多场合。在这些场合里,人们都用大量的温度计来采集温度。我们知道计量工具大多需要定期校正(常规下一年或者半年校正一次)。但是这些应用里的温度测量仪器一旦安装后,往往难以送到计量部门去校正。因此,对温度控制工艺曲线的在线快速检测与校正就显得十分重要。为此,作者采用PID控制技术开发了一套起计量传递作用的校正控制系统,以及一套全自动的PID参数测定与调整的温度分析系统。

系统硬件设计

系统原理框图见图1,与常规A/D转换相比,此系统有以下优点:

1、M35配合专用的V/F转换器,具有转换线性度好,精度较高,且便于利用单片机进一步提高测量精度;

2、由于V/F变换本身是积分模式,所以抗干扰能力强;

3、于V/F变换输出是脉冲,易实现光电隔离;

4、号传输只占据一位数据口,接口方便,成本低;

5、于远距离传输,实现远程温度控制。

其次,在设计系统时,易于安排具有强电隔离、升降温控制、显示、报警、报数等功能电路。因而,本系统可靠实用、唯一不足的是采集速度较慢,但对一般速度的温度控制而言,适当的设计仍能获得高精度的控制品质。

图片.png

(1)测温和V/F变换电路见图2:传感器LM35的灵敏度为 10mV/℃,适合与V-F 专用芯片LM331配合使用。信号直接从 LM35 输出端取样滤波后送到 LM331 进行 V-F变换,并使 200mV~1500mV 对应 200Hz~1500Hz。为了使信号的抗干扰能力增强,在信号变换时进行了光电隔离。为了提高测量精度,适应测量周期的要求,利用555芯片对频率信号作了分频处理。

图片.png

(2)语音电路与接口:本系统采用ISD1400芯片作为温度语音电路,它有20秒的录放时间。语音地址直接由89C52的P1口经74LS373提供。预先录制好的温度语音,由 89C52 判断被测温度,通过 74LS373 对其进行任意组合放出,从而实现实时温度报数、预置温度报警。

(3)过零脉冲的提取:为了在零点进行通断控制,需要提取市电的过零脉冲采用运算放大器构成过零比较器,然后通过 NE555 芯片产生单稳态触发,调节到适合控制可控硅导通的脉冲,就可以精确地提取过零点。

(4)市电导通周波数控制及功率驱动控制脉冲由三态门缓冲器输出,经光电隔离后送入驱动三极管的基极,经电流放大后驱动双向可控硅,达到功率控制的目的。

(5)直流电机驱动电路由于直流电机工作电压为12V左右,而工作电流也比较大,因而必须采取功率放大电路,为此我们选用功率场效应管的单电压功放电路。

(6)温度变送器电路:本单元电路以 AD694为核心,实现 0~2V 变换为 4~20mA,便于远程控制。信号传输到目的地后,再由 4~20mA 变换为 0~5V。由于从前置级输出的信号为 0~2V,所以,以 2V 作为参考电压。

系统软件设计

本系统采用了类似 PID的有较高精度的加热控制算法,并利用一台微型风扇控制超调量。程序流程图见图3。


图片.png


由于传感器LM35的灵敏度为10mV/℃,为保证0.1℃的控制精度,因此采用V/F变换电路使每10mV的电压变化对应 10Hz的频率变化。从而有每0.1℃的温度变化对应1Hz的频率变化,达到了分辨率为0.1℃。通过测量送入脉冲个数来测定频率,其稳定性非常好。采用类似的离散型的 PID 算法来无穷逼近预置值,达到了高精度的控制。其原理是利用电阻丝加热一供测量用的简易的金属热平衡块。因此,受控对象可以看成是一个具有一定自衡能力的惯性系统,可用一阶惯性环节和一个延迟环节来近似。其近似传递函数为:

G(S)=K/[(1+TS)&mes;(1+τS)]

在本系统中,由于T》》τ,故只需进行比例积分调节即可。最终将温度控制转化为加温脉冲个数N的控制,达到实现温控的目标一般的比例微分积分控制算法参数的整定是采用凑数法或通过温度记录仪(也可能微机)实现温度记录。而本系统可由自动测定PID参数软件,通过跟踪描绘控制曲线,验证和检查控制质量。为了适应控制系统的一般性,本系统采用扩充响应曲线法来选择PID参数。获得控制目标为 65℃时的温度控制曲线,见图4。

图片.png

LM35

LM35 是由National Semiconductor 所生产的温度传感器,其输出电压为摄氏温标。LM35是一种得到广泛使用的温度传感器。

由于它采用内部补偿,所以输出可以从0℃开始。LM35有多种不同封装型式。在常温下,LM35 不需要额外的校准处理即可达到 ±1/4℃的准确率。

LM35分类

其电源供应模式有单电源与正负双电源两种,其引脚如图一所示,正负双电源的供电模式可提供负温度的量测;两种接法的静止电流-温度关系,在静止温度中自热效应低(0.08℃),单电源模式在25℃下静止电流约50μA,工作电压较宽,可在4—20V的供电电压范围内正常工作非常省电。

LM35封装

图一:LM35封装

工作电压4~30V,在上述电压范围以内,芯片从电源吸收的电流几乎是不变的(约50μA),所以芯片自身几乎没有散热的问题。这么小的电流也使得该芯片在某些应用中特别适合,比如在电池供电的场合中,输出可以由第三个引脚取出,根本无需校准。

目前,已有两种型号的LM35可以提供使用。LM35DZ输出为0℃~100℃,而LM35CZ输出可覆盖-40℃~110℃,且精度更高,两种芯片的精度都比LM35高,不过价格也稍高。

计算公式

LM35计算公式.png

封装型号

TO-46金属罐形封装

LM35H,LM35AH,LM35CH,LM35CAH,LM35DH

TO-220 塑料封装

LM35DT

TO-92封装

LM35CZ,LM35CAZ LM35DZ

SO-8 IC式封装

LM35DM

规格参数

规格参数

1、工作电压:直流4~30V;

2、工作电流:小于133μA

3、输出电压:+6V~-1.0V

4、输出阻抗:1mA负载时0.1Ω;

5、精度:0.5℃精度(在+25℃时);

6、漏泄电流:小于60μA;

7、比例因数:线性+10.0mV/℃;

8、非线性值:±1/4℃;

9、校准方式:直接用摄氏温度校准;

10、额定使用温度范围:-55~+150℃。

11、引脚说明:①电源负GND;②电源正VCC;③信号输出S;

传感器参数

供电电压35V到-0.2V

输出电压6V至-1.0V

输出电流10mA

指定工作温度范围

LM35A -55℃ to +150℃

LM35C, LM35CA -40℃ to +110℃

LM35D 0℃ to +100℃

电气特性

LM35电气特性.png

LM35电气特性.png

恒温控制器介绍

恒温控制器是指用于维持主体温度稳定在某一点或者某一个温度区间的控制器件,其主要通过电路以及感应元件对主体的温度进行感应、调控。广泛应用于化学、物理、生物等领域,在日常生活中也广泛应用,例如孵化器、冰箱等等。

恒温电路

恒温控制器的电路组成如图所示。电路电压由市电经全波整流和滤波后提供,约为6V。电路中,通用运算放大器μA741(或F007)作为放大比较器,555时基电路作为触发器,双向晶闸管VTH用作加热器的电子开关,热敏电阻器RT作为传感器控制温度,用电位器RP调节控制恒温点,VL1兼作稳压管,提供约为1.8V的基准电压,VL2作为加热升温的指示灯

恒温控制电路

恒温控制电路

工作原理

RT在低温下阻值很大,在高温下阻值很小。当环境温度低于设定温度时,μA741通用运放的2脚电压高于其3脚电压,6脚输出低电平(要求低于3V),于是555时基电路触发端的2脚呈低电平,其输出端3脚输出高电平,使VL2发光指示,同时触发双向晶闸管VTH导通,使加热器通电,加热升温。当环境温度高于设定温度值时,μA741通用运放的2脚电压低于3脚电压,6脚输出高电平(要求高于6V),于是555时基电路输出端3脚的输出翻转为低电平,VL2熄灭,双向晶闸管VTH截止,加热器断电,停止加热。

元器件选择

μA741通用运放也可改用其他运放,如5G022低功耗运放等。

发光二极管选用正向压降略大的红色发光二极管,如BT101磷砷化镓发光二极管等,若正向压降较小,则可用两只正向发光二极管串联使用。

加热器用100W电灯泡或电炉(功率按需要在300~500W范围内选用)。

VTH选用3~5A、耐压400V以上的双向晶闸管。

电源变压器功率只需3W以上,可利用小型收、录音机用的电源变压器

整流二极管用1N4001~1N4007中任一种均可。

安装调试

按图所示的印制电路板图插好元器件并检查无误后,在焊接面焊好。调试时,恒温点用电位器RP调节设定。调节RP时要用标准温度计来监视、校准。

印刷电路板图

印刷电路板图

注意,因为本电路与市电220V相通供电,操作时,必须注意安全,以防触电。

实际应用编辑

恒温控制器的特点是能够调节系统的温度,使之能够保持在本身所需要的温度范围,可以通过程序设定,使控制器所控制范围内的温度用于各种需要,可用于种蘑菇、养鸡、温室养花、种菜等场合。例如,可以控制温度恒定在一定的范围内,模拟出母鸡孵化小鸡的温度,用于小鸡的孵化;也可以用于模拟控制温度在种子、蔬菜、水果等的萌芽、生长、成熟等各个阶段的温度情况,得到反季节的甚至本地不适合种出的水果、蔬菜。[2]




责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯