0 卖盘信息
BOM询价
您现在的位置: 首页 > 技术方案 >工业控制 > 基于STM32F4核心处理器的四轴飞行器参考电路设计解决方案

基于STM32F4核心处理器的四轴飞行器参考电路设计解决方案

2017-04-21
类别:工业控制
eye 1348
文章创建人 拍明



四轴飞行器是一种利用四个旋翼作为飞行引擎来进行空中飞行的飞行器。进入20世纪以来,电子技术飞速发展四轴飞行器开始走向小型化,并融入了人工智能,使其发展趋于无人机,智能机器人。

 

四轴飞行器不但实现了直升机的垂直升降的飞行性能,同时也在一定程度上降低了飞行器机械结构的设计难度。四轴飞行器的平衡控制系统由各类惯性传感器组成。在制作过程中,对整体机身的中心、对称性以及电机性能要求较低,这也正是制作四轴飞行器的优势所在,而且相较于固定翼飞机,四轴也有着可垂直起降,机动性好,易维护等优点。

 

四轴飞行器


系统方案

 

本设计采用STM32F4作为核心处理器,该处理器内核架构 ARM Cortex-M4,具有高性能、低成本、低功耗等特点。

 

系统方案


设计总体框图

 

主控板包括传感器MPU6050电路模块、无线蓝牙模块、电机启动模块,电源管理模块等;遥控使用商品遥控及接收机。控制芯片捕获接收机的PPM命令信号,传感器与控制芯片之间采用IIC总线连接,MCU与电调之间用PWM传递控制信号。 

 

MPU-6050电路原理图


MPU-6050电路原理图

 

电源管理模块

 

四轴飞行器要求整体设计质量较轻,体积较小,因此在电池的选取方面,采用体积小、质量轻、容量大的锂电池供电最合适。系统的核心芯片为STM32F103,常用工作电压为3.3V,同时惯性测量传感器,蓝牙通信模块的常规供电电压也为3.3V,锂电池的电压为11.4V,要使系统正常工作,需要将11.4V的锂电池电压稳压到3.3V。常用的78系列稳压芯片已不再适用,必须选择性能更好的稳压芯片。


经综合考虑,本电路采用LM1117-3.3和LM2940-5电源部分的核心芯片。电池电源经过LM2940-5降到5V后在输入LM1117-3.3稳压为3.3V。由于电机部分电流较大,故在飞控电路部分加入了过流保护,使用500mA保险丝

 

本电路采用LM1117-3.3和LM2940-5电源部分的核心芯片


编者结语

 

本设计是基于STM32F4的四轴航拍平台。以STM32F407为控制核心,四轴飞行器为载体,辅以云台的航拍系统。硬件上由飞控电路,电源管理等系统组成。其具有灵活轻盈,延展性,适应性强好等特点。在实际应用方面,四轴飞行器可以在复杂、危险的环境下可以完成特定的飞行任务,也可以用于监控交通,环境等。


STM32F4处理器


STM32F4是由ST(意法半导体)开发的一种高性能微控制器。ST(意法半导体)推出了以基于ARM® Cortex™-M4为内核的STM32F4系列高性能微控制器,其采用了90 纳米的NVM 工艺和ART(自适应实时存储器加速器,Adaptive Real-Time MemoryAccelerator™)。

ART技术使得程序零等待执行,提升了程序执行的效率,将Cortext-M4的性能发挥到了极致,

使得STM32 F4系列可达到210DMIPS@168MHz。

自适应实时加速器能够完全释放Cortex-M4 内核的性能;当CPU 工作于所有允许的频率(≤168MHz)时,在闪存中运行的程序,可以达到相当于零等待周期的性能。

STM32F4系列微控制器集成了单周期DSP指令和FPU(floating point unit,浮点单元),提升

了计算能力,可以进行一些复杂的计算和控制。

STM32 F4系列引脚和软件兼容于当前的STM32 F2系列产品。

STM32F4优点

※兼容于STM32F2系列产品,便于ST的用户扩展或升级产品,而保持硬件的兼容能力。

※集成了新的DSP和FPU指令,168MHz的高速性能使得数字信号控制器应用和快速的产品开发达到了新的水平。提升控制算法的执行速度和代码效率。

※先进技术和工艺

- 存储器加速器:自适应实时加速器(ART Accelerator™ )

- 多重AHB总线矩阵和多通道DMA:支持程序执行和数据传输并行处理,数据传输速率非常快

- 90nm工艺

※高性能

- 210DMIPS@168MHz

- 由于采用了ST的ART加速器,程序从FLASH运行相当于0等待更多的存储器

- 多达1MB FLASH (将来ST计划推出2MB FLASH的STM32F4)

- 192Kb SRAM:128KB 在总线矩阵上,64KB在专为CPU使用的数据总线上高级外设与STM32F2兼容

- USB OTG高速 480Mbit/s

- IEEE1588, 以太网 MAC 10/100

- PWM高速定时器:168MHz最大频率

- 加密/哈希硬件处理器:32位随机数发生器(RNG)

- 带有日历功能的32位RTC:<1 μA的实时时钟,1秒精度

※更多的提升

- 低电压:1.8V到3.6V VDD,在某些封装上,可降低至1.7V

- 全双工I2S

- 12位 ADC:0.41us转换/2.4Msps(7.2Msps在交替模式)

- 高速USART,可达10.5Mbits/s

- 高速SPI,可达37.5Mbits/s

- Camera接口,可达54M字节/s


四轴飞行器介绍

四轴飞行器,又称四旋翼飞行器、四旋翼直升机,简称四轴、四旋翼。这四轴飞行器(Quadrotor)是一种多旋翼飞行器。四轴飞行器的四个螺旋桨都是电机直连的简单机构,十字形的布局允许飞行器通过改变电机转速获得旋转机身的力,从而调整自身姿态。具体的技术细节在“基本运动原理”中讲述。因为它固有的复杂性,历史上从未有大型的商用四轴飞行器。近年来得益于微机电控制技术的发展,稳定的四轴飞行器得到了广泛的关注,应用前景十分可观。国际上比较知名的四轴飞行器公司有中国大疆创新公司、法国Parrot公司、德国AscTec公司和美国3D Robotics公司。


四轴飞行器基本运动原理

垂直运动,俯仰运动,滚转运动,偏航运动[1]  。

垂直运动

图(a)中,因有两对电机转向相反,可以平衡其对机身的

反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。保证四个旋翼转速同步增加或减小是垂直运动的关键。

垂直运动

俯仰运动

图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转

速保持不变。为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速改变量的大小应相等。由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴旋转(方向如图所示),同理,当电机1的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。

俯仰运动

滚转运动

与图(b)的原理相同,在图(c)中,改变电机2和电机4

的转速,保持电机1和电机3的转速不变,则可使机身绕x轴旋转(正向和反向),实现飞行器的滚转运动。

滚转运动

偏航运动

四旋翼飞行器偏航运动可以借助旋翼产生的反扭矩来实现

。旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图(d)中,当电机1和电机3的转速上升,电机2和电机4的转速下降时,旋翼1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在富余反扭矩的作用下绕z轴转动,实现飞行器的偏航运动,转向与电机1、电机3的转向相反。因为电机的总升力不变,飞机不会发会垂直运动。

偏航运动

前后运动

要想实现飞行器在水平面内前后、左右的运动,必须在水平面内对飞行器施加一定的力。在图(e)中,增加电机3转速,使拉力增大,相应减小电机1转速,使拉力减小,同时保持其它两个电机转速不变,反扭矩仍然要保持平衡。按图(b)的理论,飞行器首先发生一定程度的倾斜,从而使旋翼拉力产生水平分量,因此可以实现飞行器的前飞运动。向后飞行与向前飞行正好相反。当然在图(b)图(c)中,飞行器在产生俯仰、翻滚运动的同时也会产生沿x、y轴的水平运动。

前后运动

侧向运动

在图(f)中,由于结构对称,所以侧向飞行的工作原理与前后运动完全一样。


侧向运动.png



责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: STM32 处理器

相关资讯